

Purpose

- Update original May 2015 groundwater scoping analysis to estimate magnitude of groundwater PCB concentrations up-gradient of Kaiser
 - Consider data from additional background wells
 - Revise assumption for area of impact

Original Analysis

- Simple mass loading analysis conducted to assess
 - How much load coming from Kaiser plume?
 - How much load coming from Kaiser property contamination outside of Kaiser plume?
- Background load estimated from concentration observed at a single well (RM-MW-9s)

Update of Original Analysis

- Background well used in original analysis located in close proximity to stormwater dry wells
 - May not accurately represent background concentrations
- Analysis repeated using data from additional background wells

0

■ Calculates PCB loading based upon calculated seepage rate and specified concentration ■ Model inputs include - Hydraulic conductivity - Horizontal groundwater gradient - Horizontal length of impacted zone

*Model and key assumptions provided on SRRTTF web site

Updated Calculations Identical model framework used as from original analysis Two inputs updated from original calculations Hydraulic conductivity Horizontal groundwater gradient Horizontal length of impacted zone

Estimated Up-Gradient Loading

- Up-gradient load estimated at 14 to 55 mg/day
- 55 mg/day if average well concentration data is assumed
- 14 mg/day if spikes are dismissed
- 2015 synoptic survey data may lend some credence to spikes

River Data May Lend Credence to Spikes • 2015 Mirabeau Park river station located just upstream of Kaiser also show a spike in PCBs – Originally considered an outlier, but maybe not

Conclusions

- Analysis is not rigorous enough to "prove" that a significant up-gradient source exists
- Rigorous enough to show that up-gradient sources merit additional consideration
- 40 to 55 mg/day load, if accurate, corresponds to one of the largest sources of loading to the river
- More difficult questions
- Who is responsible?
- How feasible is it to remediate?

