PCB: the Pollution Prevention Approach

Adriane P. Borgias MSEM, CHMM Presentation to USEPA April 27, 2017

SRRTTF Established by Memorandum of Agreement 2012.

Members of the community, stewards of the river.

COLLABORATION 🖉 INNOVATION 🦉

PROGRESS

The Problem:

- The Spokane River does not meet the Water Quality Standards for polychlorinated biphenyls and other toxics.
- > 98% reduction in PCB loading is needed.
- Permitted discharges have a disproportionate responsibility for cleanup.
- End of pipe clean up is expensive and may not be possible.
- Using Pollution Prevention principles is the only viable option.

Can We Achieve our WQS?

- Assume all PCB from pigments becomes available to the river.
 - (trash, decomposition, burning, wastewater, stormwater, etc.)
- 225 cf/s average annual flow into Long Lake
 - $7x10^{12}$ kg water/yr.
- PCB Concentrations in the river:
 - From pigments alone: 2 x 10⁻⁷ ppm
 - Current WQS target: 0.07 x 10⁻⁷ ppm

Why this is important

PCB is a national water quality concern

EPA Watershed Assessment, Tracking and Environmental Database

The Moving Pieces

Waste Management Hierarchy

- Prevent Waste Generation
- Minimize Waste Generation
- Reuse Waste Materials
- Recycle Wastes: Doesn't work for PCB!
- Utilize for Energy Recovery
- Disposal

- Don't make it
- Don't use it
- Use less of it
- Manage it better
- Dispose of it properly
- Clean up and/or Treat at End of Pipe

- Don't make it
- Don't use it
- Use less of it
- Manage it better
- Dispose of it properly
- Clean up and/or Treat at End of Pipe

- Don't make it
- Don't use it
- Use less of it
- Manage it better
- Dispose of it properly
- Clean up and/or Treat at End of Pipe

- Don't make it
- Don't use it
- Use less of it
- Manage it better
- Dispose of it properly
- Clean up and/or Treat at End of Pipe

- Don't make it
- Don't use it
- Use less of it
- Manage it better
- Dispose of it properly
- Clean up and/or Treat at End of Pipe

- Don't make it: Stop or reduce inadvertent production.
- Don't use it: Regulatory & market incentives.
- Use less of it: Public awareness.
- Manage it better: Enforcement of rules.
- Dispose of it properly.
- Clean up and/or Treat at End of Pipe.

But, Is This Really a Problem?

- Color Pigments Manufacturers Association (2010): – 90 million lbs pigments imported/manufactured in US. – Estimated 1000-2000 lbs PCB/year.
- Estimated amount released in Spokane metro area based on per capita consumption.
 - 2000/lb x 0.5 million Spokane/ 316 million USA
 - 1435 g/yr "inadvertently produce PCB" potentially enters the Spokane River watershed.
- Correlation with the 2005 loading assessment:
 Total PCBs at Long Lake: 3664 mg/day = 1337 g/year.

Why this is important PCB is a Spokane River health concern.

Source Reduction Strategies

Six strategies to achieve source reduction:

- Toxic chemical substitution
- Production process modification
- Finished product reformulation
- Production modernization
- Improvements in operations and maintenance
- In-process recycling of production material

Green Chemistry Solutions

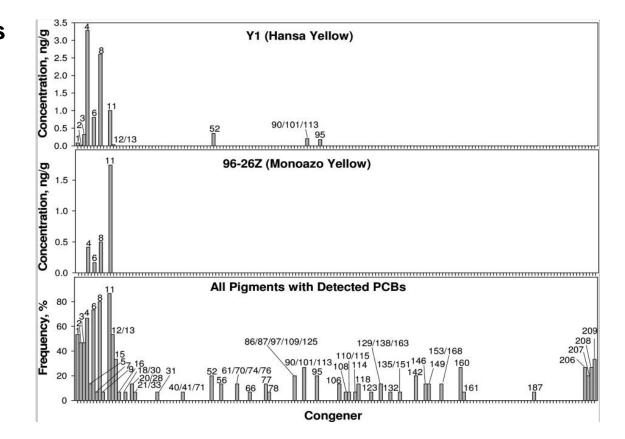
• Green Chemistry is doing chemistry the way nature does:

" the design, development and implementation of chemical products or processes that reduce or eliminate the generation of hazardous substances"

• PCB – free pigments are a green chemistry opportunity.

References

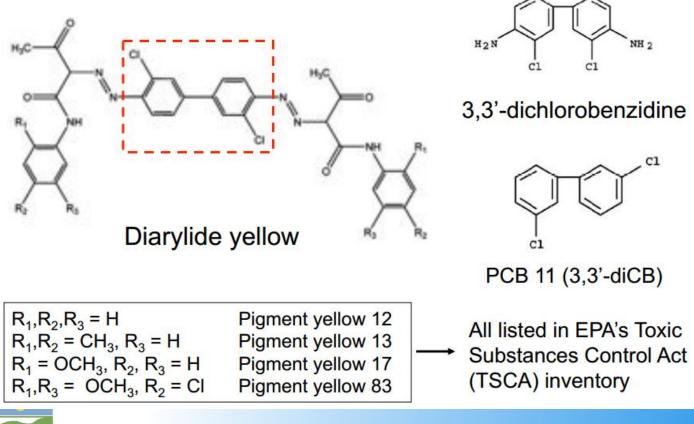
PCB in Paint Pigments


33 commercial pigments

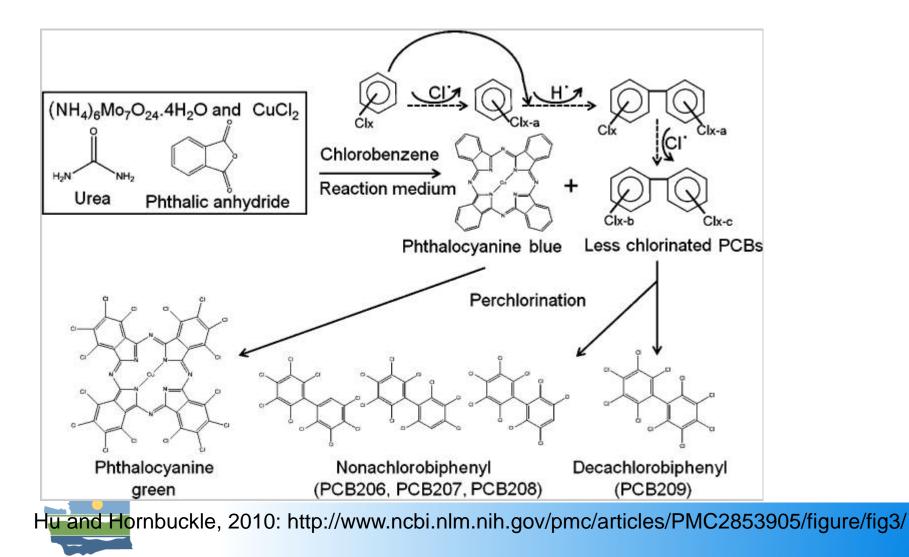
> 50 PCB congeners

Several dioxin-like

Pigments also used in


- Inks
- Textiles
- Paper
- Cosmetics
- Leather
- Plastics
- Food

Hu and Hornbuckle, 2010: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2853905/figure/fig2/

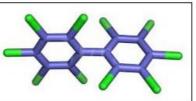

Yellows, Oranges, Reds

PCB 11 from Diarylide Yellows

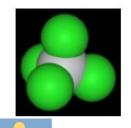
Baso et al. 2009 in Guo, Praipipat, and Rodenburg: http://www.p2.org/wp-content/uploads/june-27-pcbs-webinar.pdf

Blues and Greens

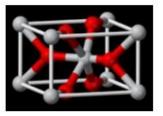
Whites


PCBs 206, 208, 209

Produced inadvertently during the making of titanium tetrachloride


Often sold to water treatment plants as a flocculant

2 FeTiO₃ + 7 Cl₂ + 6 C \rightarrow 2 TiCl₄ + 2 FeCl₃ + 6 CO


This carbon is chlorinated to form PCBs

Most TiCl₄ is then used to make TiO₂ (white pigment)

$$\text{TiCl}_4 + \text{O}_2 \rightarrow \text{TiO}_2 + 2\text{Cl}_2$$

Guo, Praipipat, and Rodenburg: http://www.p2.org/wp-content/uploads/june-27-pcbs-webinar.pdf