Narrowing of Options for Long-Term Monitoring/Tracking Program

Dave Dilks

SRRTTF Joint Tech Track/Fish Work Group Meeting March 19, 2020

Background

- Overall objective is to develop a long term monitoring program capable of tracking the effectiveness of PCB reduction activities
 - First step: Assess which sampling methodologies and which media to use in the plan
- March 3 TTWG meeting discussed sixteen candidate media and methodologies
 - Narrowed list down to five
- Follow-up task to better estimate costs associated with each option, leading to recommendation to the full Task Force
 - Consider equivalent temporal representation
 - Provide costs for two stations and six stations

Short List of Media and Methodologies

- Water Column
 - in situ solid phase extraction (CLAM)
 - passive sampling (SPMD)
 - passive sampling (solid-phase passive devices)
 - particulates (sediment trap)
- Fish tissue
 - One year old rainbow trout

Short List of Media and Methodologies

- Water Column
 - in situ solid phase extraction
 - passive sampling (SPMD and solid-phase passive devices)
 - passive sampling (solid-phase passive devices)
 - particulates (sediment trap)
- Fish tissue
 - One year old rainbow trout

Summary of Methods and Costs

Methodology	PCB Fraction Considered	Integration Period	Number of Samples/Year		Cost Per Year* (Crude/BPJ)	
			Crude	BPJ	Two stations**	Six stations**
<i>in situ</i> solid phase extraction (CLAM)	 Total water column PCB 	• One day	365	6	\$6,408,550/ \$108,100	\$9,328,550/ \$156,100
Passive sampling	 Total dissolved phase PCB 	One month	12	3	\$305,200/ \$78,400	\$401,200/ \$102,400
Particulates (sediment trap)	 Particle-bound PCBs 	Three to four months	4	3	\$74,600/ \$56,650	\$98,800/ \$74,800
Year-old wild rainbow trout	 Bioaccumulative fraction 	• One year	1	1	\$32,200/ \$32,200	\$56,400/ \$56,400

* Not required to be conducted annually, consider three to five year frequency

****** Not locked into two or six stations

How Well Do Surrogate Measures Represent Water Column?

- Fish tissue
 - Congener distribution in fish is different than the congener distribution in the water column
- Particulates

- Better than fish, but (limited) available data suggest that particles under-represent dichloro homologs and over represent hexachloro and heptachloro homologs
- Passive devices
 - Use of a controlled sorbent allows more accurate estimation of (dissolved phase) distribution

Summary of Advantages/Disadvantages

Methodology	Advantages	Disadvantages
<i>in situ</i> solid phase extraction (CLAM)	 Direct representation of one of the media of concern (total water column PCB) 	 Cost to generate annual average Concerns about whether method is fully proven
Passive sampling	 2nd best representation of total water column PCB 	 Still an indirect representation of total water column PCB 2nd highest cost
Particulates (sediment trap)	 Good temporal integration -> 2nd lowest cost 	 Poorer representation of total water column PCB
Year-old wild rainbow trout	 Best temporal integration -> lowest cost Direct representation of a medium of concern (fish) 	 Poor representation of total water column PCB

Straw Man Decision Tree

- •Year old rainbow trout should be included in long term monitoring
 - Covers all bases except accurate representation of water column PCBs
 - \$30-60k per sampling year
- Do we also need a better representation of the water column?
 - Passive water column sampling (\$80-100k per year) provides the best balance between representativeness and cost
- Do we have the resources to support a second water column measure?
 - Add sediment traps (\$60-75k per year)
- Consider CLAMs opportunistically
 - e.g. if/when they are demonstrated to accurately match whole water column samples

Discussion