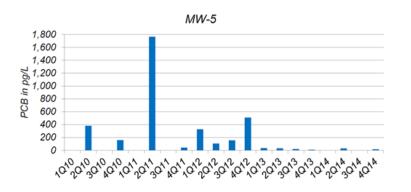
Follow-up Investigations from Multi-media Data Collection

Dave Dilks Spokane River Regional Toxics Task Force July 21, 2020 Technical Track Work Group Meeting

Task Description

- Original Scope
 - Identify river reaches where multi-media (i.e. water, sediment, biofilm) data indicate effects from non-point sources
 - Provide a best estimate of the mass loading and aerial extent of contamination
 - Prioritize identified reaches for further study
- Current Focus
 - Data strongly suggest Mission Reach should be the priority segment
 - What steps could we take next to identify source of contamination?

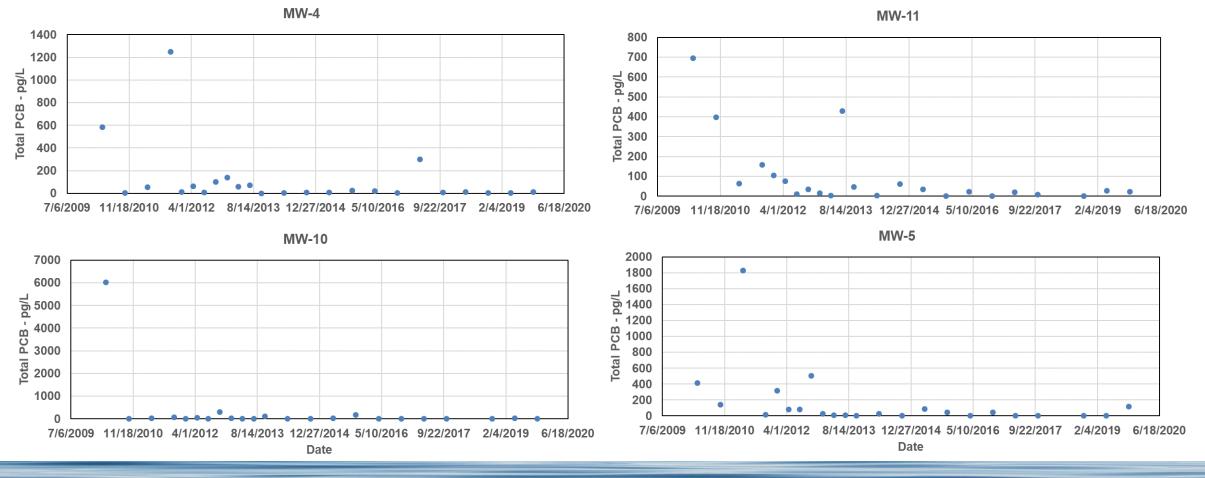
Data Considered


- Water Column
 - 2014, 2015, 2018 synoptic surveys
- Biofilm
 - 2018, 2019 Ecology surveys
- Sediment
 - 2018 Ecology (biofilm) survey
- Groundwater
 - 2010 2019 up-gradient of Kaiser

Prioritization of Reaches for Further Study

Reach	Biofilm (ppb)	Water Column Mass Balance (mg/day)	Sediment (ppb)	Comments
Upstream of Barker	<200	Negligible	No data	
Barker to Trent	500-1000	~130	14	Kaiser plume being addressed, up- gradient sources significant?
Trent to Upriver Dam	300-1400	Net negative	14	
Upriver Dam to Greene	600-1500*	Net neutral	No data	*Small PCB signal (~2000 ppb) in biofilm near GE site
Greene to USGS Gage	>2000	~40	90-130	
USGS Gage to Nine Mile	300-700	~40	No data	

Kaiser Up-Gradient Groundwater Task


 Prior evaluation of up-gradient contribution was inconclusive due to mostly low concentrations with occasional spikes

 Review recent data, make a qualitative determination of whether future study of up-gradient PCB sources is warranted

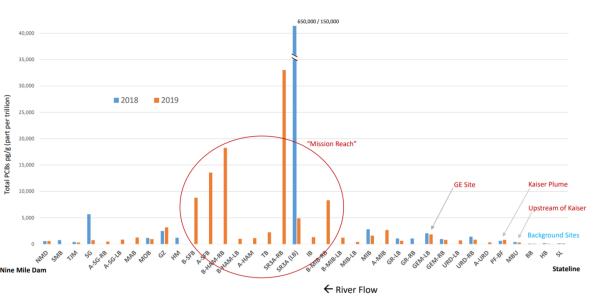
Kaiser Up-Gradient Groundwater

- No concentrations >400 ug/l observed since mid-2013
 - Additional investigation of up-gradient source does not appear necessary
 - Defer final conclusions until after TetraTech study is complete

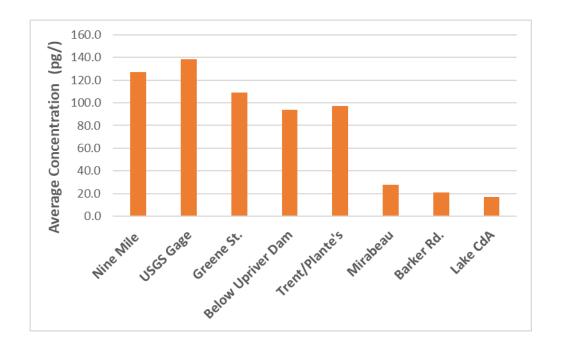
Prioritization of Reaches for Further Study

- Greene to USGS Gage reach has highest biofilm and sediment PCBs
- Barker to Trent already being addressed via Kaiser remediation

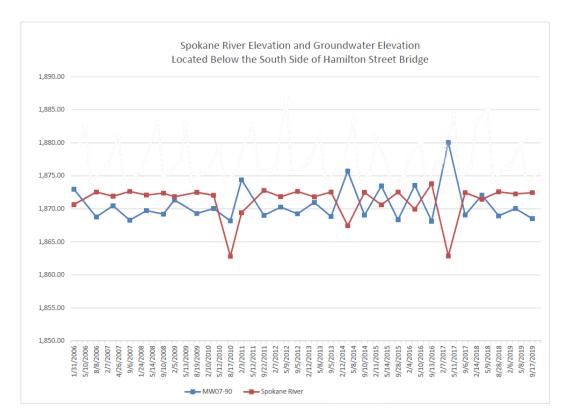
Reach	Biofilm (ppb)	Water Column Mass Balance (mg/day)	Sediment (ppb)	Comments
Upstream of Barker	<200	Negligible	No data	
Barker to Trent	500-1000	~130	14	Contribution of sources up-gradient of Kaiser looking un-important
Trent to Upriver Dam	300-1400	Net negative	14	
Upriver Dam to Greene	600-1500*	Net neutral	No data	
Greene to USGS Gage	>2000	~40	90-130	Top priority
USGS Gage to Nine Mile	300-700	~40	No data	


Initial Environmental Forensics

- Examine available data to help identify a possible source
 - Potential source categories
 - Spatial distribution of contamination
 - Transport mechanisms between potential source and river


- Potential source categories
 - Contaminated river fill
 - Contaminated bottom sediments
 - Landside surface contamination
 - Landside subsurface contamination
 - Near-bank or further upland

- Spatial distribution of biofilm PCB concentration
 - Biofilm PCB concentrations elevated in Mission Reach
 - Concentrations revert to background levels downstream of Mission Reach



- Spatial distribution of water column PCB concentration
 - No significant increase in water column PCB concentrations downstream of hot spot

Initial Forensics Examine Delivery Pathways Source

- Continuous groundwater loading pathway doesn't exist
 - Contaminated area is in a losing reach, i.e. net loss of river flow to groundwater
 - Segment can be gaining at select times and locations
 - Groundwater elevation at Hamilton St. bridge is occasionally above river level

- Stormwater and CSO outfalls exist in Mission Reach
 - Elevated PCB concentrations observed in outfalls near Trent Bridge
 - City of Spokane hazard assessment indicates areas of historical contamination, e.g.
 - "Playfair Race Track 2400 E. Main: 2002 Phase I assessment showed high PCB levels on some testing and high potential for more in the region. Multiple PCB containing transformers were known to be at the site as well."

- No evidence of particularly stormwater high concentrations upstream of SR3A
- Downstream MS4/CSO loads are higher with no apparent biofilm impact

Initial Forensics towards Defining a Source: Key Points

- Biofilm PCB concentrations elevated in Mission Reach revert to background levels downstream of hot spot
- No concurrent increase in water column PCB concentrations downstream of hot spot
- Stormwater and CSO pathways exist
- Groundwater pathway exists
 - At select times and locations

Competing Evidence in Terms of Source Origin

Potential Source	Arguments in Favor	Arguments Against
Contaminated Bottom Fill	 Consistent with localized biofilm contamination, absence of water column impact 	 Fill has been there many decades, likely "spent"
Contaminated Bottom Sediments	 Consistent with localized biofilm contamination, absence of water column impact Anecdotal evidence of buried drum 	 High energy segment with little deposition makes historical sediment contamination unlikely
Upland Surface Contamination	 MS4 and CSO outfalls exist in area 	 Existing outfall concentrations aren't compelling
Upland Subsurface Contamination	 Known areas of historical contamination exist Localized times of gaining 	 Net losing reach No downstream signal in biofilm or water column

How Can We Explain Observed Spatial Patterns with An Upland Source?

- Absence of water column signal could be explained by intermittent loading (e.g. stormwater/CSO loads or intermittent groundwater)
 - If intermittent loading didn't occur during times of water column sampling, that would explain the absence of water column signal
- No solid explanation for lack of a downstream biofilm signal
 - Particulates from MS4/CSO loading settle to the bottom?
 - Biofilm serves as biological treatment system??
 - Scavenges load from water column before downstream biofilm is contaminated

- Narrow down potential for groundwater contribution
- Deeper dive into surface soil contamination
- Determine likelihood of bottom fill contribution
- Additional biofilm sampling to narrow down contributing area(s)
- Deeper dive into biofilm data

- Narrow down potential for groundwater contribution
 - Define times and/or locations where groundwater is delivered to river
 - Monitor groundwater levels, existing wells or install piezometers
 - Near-bank water quality monitoring could identify presence of groundwater contribution
- Deeper dive into surface soil contamination
- Determine likelihood of stream bottom contribution
- Additional biofilm sampling to narrow down contributing area(s)
- Deeper dive into biofilm data

- Narrow down potential for groundwater contribution
- Deeper dive into surface soil contamination
 - Targeted MS4 and/or CSO sampling
 - PCB-sniffing dog
- Determine likelihood of stream bottom contribution
- Additional biofilm sampling to narrow down contributing area(s)
- Deeper dive into biofilm data

- Narrow down potential for groundwater contribution
- Deeper dive into surface soil contamination
- Determine likelihood of stream bottom contribution
 - Deeper dive into the origin of fill
 - Visual survey of bottom characteristics
 - PCB sampling of fill material
 - Sub-bottom profiling for buried drums/transformers
- Additional biofilm sampling to narrow down contributing area(s)
- Deeper dive into biofilm data

- Narrow down potential for groundwater contribution
- Deeper dive into surface soil contamination
- Determine likelihood of stream bottom contribution
- Additional biofilm sampling to narrow down contributing area(s)
 - Results of geostatistical analyses indicate that samples spaced 100 ft apart would be required to pinpoint source location
- Deeper dive into biofilm data

- Narrow down potential for groundwater contribution
- Deeper dive into surface soil contamination
- Determine likelihood of bottom fill contribution
- Additional biofilm sampling to narrow down contributing area(s)
- Deeper dive into biofilm data
 - Assessment of significance of observed levels of biofilm contamination
 - PCB in Mission Park fish not nearly as elevated in 2012 as they were in 2005
 - Compare estimated mass of PCB in biofilm to estimate mass of fish in segment
 - Pattern comparison between PCBs in biofilm and PCBs in fish

Potential Next Steps and Feasibility to Conduct Near Term

Source Category	Feasibility
Upland Subsurface	
Monitor levels in existing wells	Н
Monitor levels in new wells	L
Near-bank quality monitoring	Н
Upland Surface	
Targeted outfall sampling	Н
PCB-sniffing dog	Н
Stream Bottom	
Deeper dive into the origin of fill	Н
Visual survey of bed characteristics	Н
PCB sampling of fill material	Н
Sub-bottom profiling	М

Category	Feasibility
Additional Biofilm Monitoring	
Survey with more detailed spatial coverage	L
Detailed Review of Existing Data	
Compare mass of PCB in biofilm to mass of fish to assess significance	Н
Pattern comparison: fish and biofilm	Н