Watershed Wide Management Issues and Candidate Studies

SRRTTF-TTWG Data Synthesis Workshop February 1, 2022

Key Issues

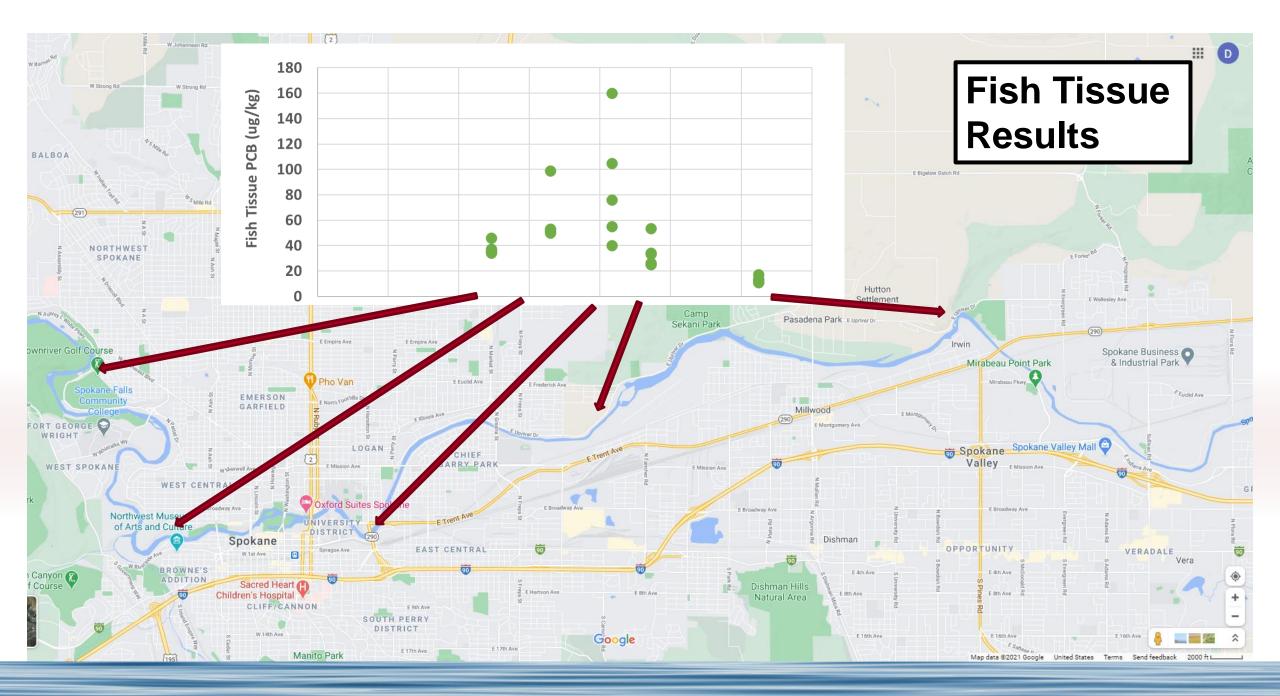
- Are we making measurable progress?
- Do currently undefined sources exist?
- From what pathway(s) are fish receiving the majority of their PCBs?

Background: Measurable Progress

- Task Force must make measurable progress toward meeting applicable water quality criteria for PCBs
 - Demonstration of progress requires a long-term monitoring
- Task Force identified need for long-term monitoring program starting in 2020
 - Designed to provide baseline year of data against which future years' concentrations could be measured
 - Key question "What sampling method(s) are most appropriate to support this assessment?"

Background: Measurable Progress

- Task Force reviewed 16 different candidate methods and selected two for implementation
 - PCB concentrations in year-old Redband Trout
 - Water column PCB concentrations via semi-permeable membrane devices (SPMDs)
- Monitoring was initiated in 2020
 - Today's objective is to review results and decide if adjustments need to be made


Medium/Methodology	Temporal Rep	Spatial Rep	Physical Rep	Trend	Low-Level	Sustainable	Cost
Water Column							
• Small volume grab samples							
Large volume composite							
• In situ solid phase extraction							
• Passive sampling: SPMD							
Solid-phase passive devices							
Particulates (sediment trap)							
Particulates (centrifugation)							
• Biofilm							
Sediments							
Grab samples							
• ELISA							
Solid-phase passive devices							
Fish							
Multi-age composites							
• One year old rainbow trout							
Other							
Osprey Eggs							
Point Source Discharges							

Fish Sampling

- Sampling conducted in fall of 2020 by WDFW
- Five reaches sampled
 - 25 fish per reach
 - Analyzed as composites of five fish apiece

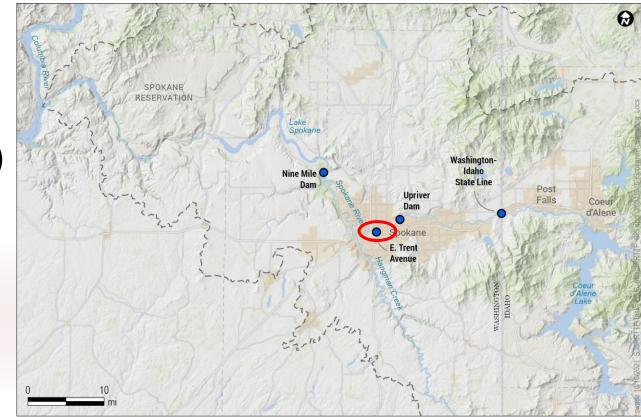
- Sampling reaches planned
 - 1. State Line
 - 2. Spokane Valley
 - 3. Downstream of Upriver Dam
 - 4. Mission Reach
 - 5. Water St. to TJ Meenach
 - 6. Riverside Water Reclamation Facility (RWRF)

Future Fish Tissue Monitoring

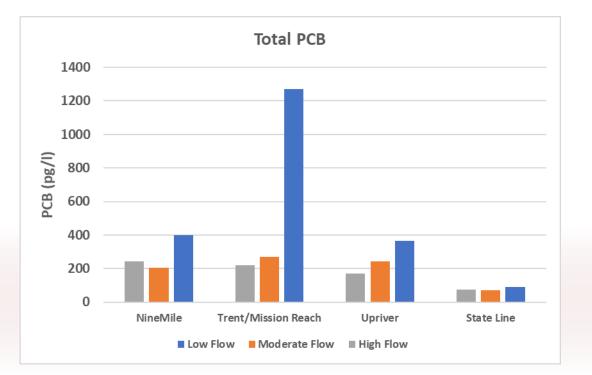
- Program implementation proceeded as planned, except for one issue
 - Lack of fish in the target size range at the State Line location
 - Suitable sized fish not expected to be present at that station in future years
- Future steps
 - Confirm WDFW's willingness to continue sampling support
 - Resolve lack of suitable trout numbers at State Line
 - Continue existing monitoring program into the future without data from State Line?
 - Adjust monitoring program to include new species at State Line?
- How important is it to conduct a trend assessment upstream of Spokane Valley?

Water Column Monitoring

- Selected methodology was SPMDs: semi-permeable membrane devices
- Passive sampler
 - Low-density polyethylene tube filled with a highly purified lipid
 - PCBs from the water column diffuse through tube walls and concentrate in the lipid
- Deployed in field for ~28 days
 - Provides integrated estimate of dissolved phase water column PCB concentration



Pictures from Ecology (2019) SOP

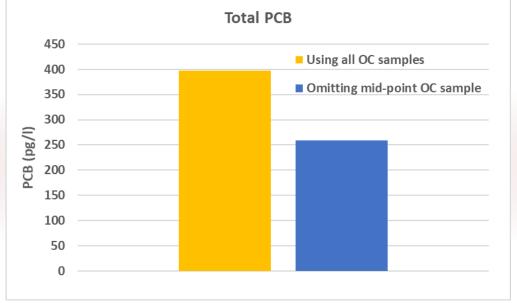

Deployment Details

- Four locations
 - WA/ID State Line
 - Downstream of Upriver Dam
 - E. Trent Avenue/Mission Reach (〇)
 - Nine Mile Dam
- Three deployment periods
 - Low flow (Aug/Sept, ~1000 cfs)
 - Moderate flow (Feb/Mar, ~4000 cfs)
 - High flow (Apr/May, ~10,000 cfs)

Observed Concentrations

- Results generally consistent with prior observations
 - Elevated concentration observed at Trent/Mission Reach during low flow condition

Future Water Column Monitoring

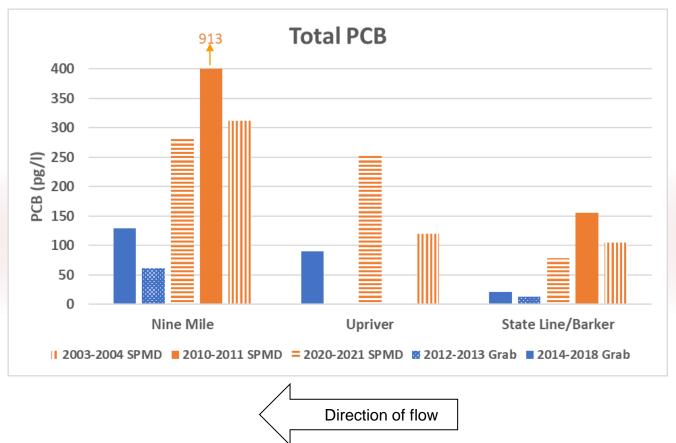

- Continued use of SPMDs poses some challenges for long-term trend assessment
 - Indirect calculation of PCB concentration
 - Quality control issues
 - Comparability to grab sample results

Indirect Calculation of PCB Concentrations

- SPMDs do not directly measure water column PCB concentrations
 - PCB concentration measured in the sampling device requires two conversion steps to estimate water column total PCB concentrations
 - 1. Mathematical calculation of dissolved water column PCB concentration based upon PCB concentration in the sampler
 - 2. Mathematical calculation of total water column PCB concentration based dissolved water column PCB and organic carbon concentration
- Ecology does not accept SPMD results in EIM, because concentrations are modeled and not directly observed

Indirect Calculation of Total PCB Concentrations

- While the limitations caused by indirect calculation were known in advance, recent Spokane sampling highlights the issue
 - Estimated total PCB concentrations are sensitive to variability in organic carbon concentration
 - Example: Exclusion of a single organic carbon sample changes predicted total PCB concentration at Nine Mile by 140 pg/l
- Issue of converting to total PCBs could be avoided by conducting trend analysis using only dissolved PCBs



Quality Control Issues

- Majority of PCB concentration measurement arising from this study are flagged as "estimated" values
 - Percent recovery of performance reference compounds for many samples outside of the desired range
 - Higher than expected variability among replicates
 - Failure of continuous temperature probes on two SPMDs

Comparability to Concentrations from Grab Samples

- Comparison conducted between historical concentrations measured by SMPDs and grab sampling at similar locations
 - Concentrations measured by SPMDs are consistently greater than those measured by grab sampling
- Not necessarily a reason to discontinue use of SPMDs
 - Worthy of further consideration prior to mingling both sets of data in trend analysis

Post-Audit of SPMD Suitability

What we knew

<u>Advantages</u>

- Less susceptible to blank contamination than grabs
- Provides integrated concentration over a month-long period

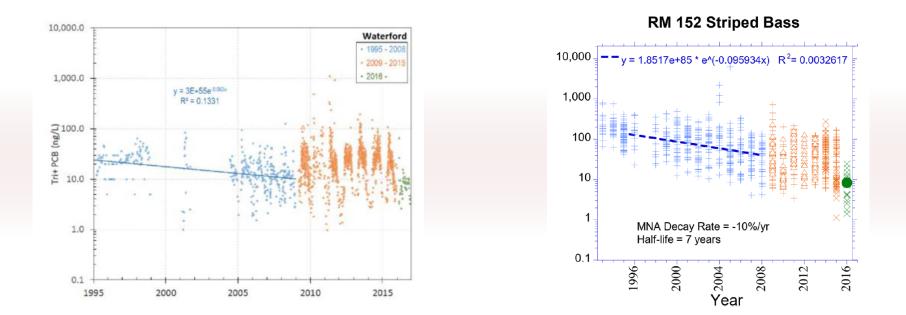
Disadvantages

 Provides indirect estimate of water column PCB concentration What we've learned

Advantages

 Confirmed superior performance relative to blank contamination

Disadvantages


- Estimates of total PCB concentration can be sensitive to variability in water column organic carbon concentration
- Results may not be directly comparable to those from grab samples

Alternatives to SPMDs

- in situ solid phase extraction (CLAMs)
 - Only method rated good in all key aspects of initial review
 - Has had historical issues, presumably now addressed
 - Ecology (2019) "A follow-up laboratory study should be conducted to test the accuracy of the SPE-CLAM device."
- Solid phase passive samplers
 - Similar to SPMDs but easier to implement
 - Also provide indirect estimate of dissolved phase PCB concentration
 - Less of a track record
- Water column grab samples
 - Currently being used as basis for trend assessment in Spokane
 - Blank contamination will become more problematic as concentrations decrease in the future

PCB Trend Assessment Will Not Be Easy

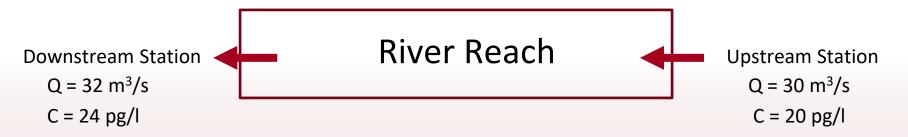
- "Because of natural variability, you need a LOT of data to be able to see trends in the water data (and they don't have blank issues)"
 - Rodenburg (2022) presentation to SRRTTF discussing Hudson River

Summary

- SPMDs are an imperfect measurement technique
- No clearly superior alternative exists
- PCB trends not easy to detect

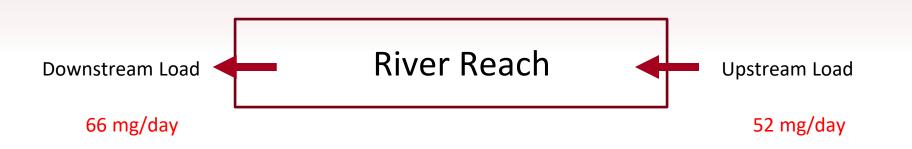
Discussion

- Straw man for discussion
 - Continue use of SPMDs
 - Focus on dissolved phase concentration for trend assessment, recognizing that this doesn't allow direct comparison to the water quality standard
 - Supplement future water column trend assessments with grab samples collected for other purposes
- Other options?
 - Begin trial investigation of CLAMs?


Do Currently Undefined Sources Exist?

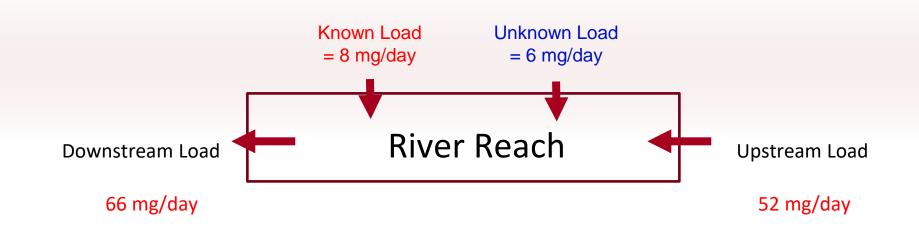
- The mission of the Task Force is to characterize the sources of toxics (PCBs) in the Spokane River and identify and implement appropriate control actions
- Problem Statement
 - Have we identified all important sources?

Activities Taken to Identify Undefined Sources

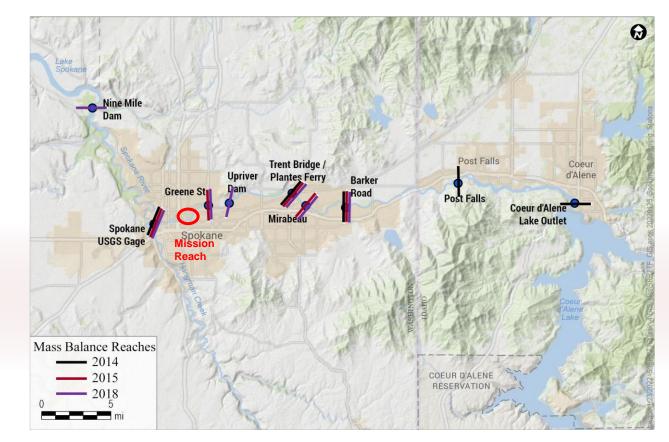

- The primary activity taken to identify undefined sources has been a mass balance approach
 - Measure all known loads of PCBs to the river
 - Measure PCB load in the river
 - Determine whether observed load in river is larger than the sum of all known loads
- Assessed via three synoptics surveys

- Calculate load of PCB (mass per time) at individual river reaches
 - Load = River flow x River PCB concentration
- Example

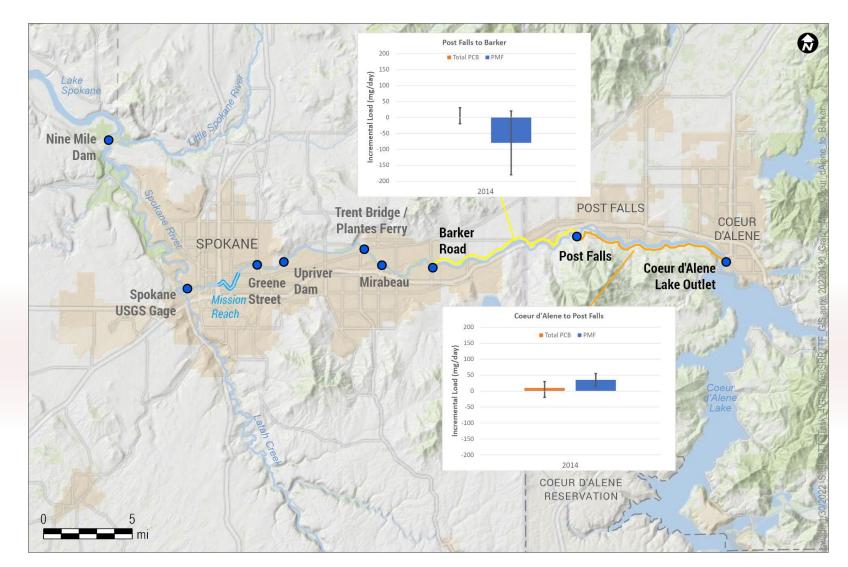
- Upstream Load = 30 m³/sec x 20 pg/l = 52 mg/day
- Downstream Load = 32 m³/sec x 24 pg/l = 66 mg/day


- Calculate load of PCB (mass per time) in river at several locations
 - Load = River flow x River PCB concentration
- Determine load of PCB added to river between two monitoring stations by comparing upstream and downstream load

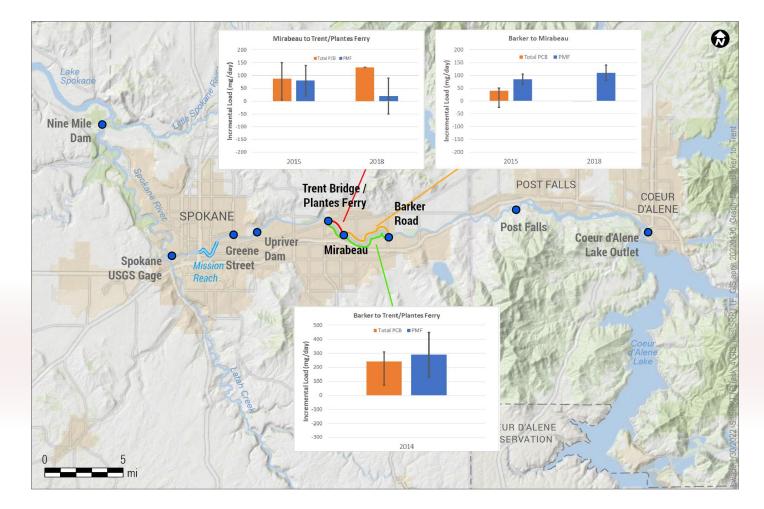
- Calculate load of PCB (mass per time) in river at several locations
 - Load = River PCB concentration x River flow
- Determine load of PCB added to river between two monitoring stations by comparing upstream and downstream load
 - Added load = Downstream load (66) upstream load (52) = 14



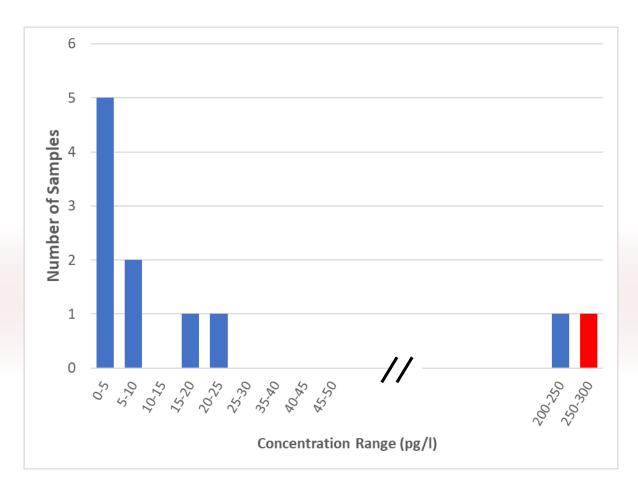
- Added load can be divided into known (e.g., point sources) and unknown components
 - Assume a known load of 8 mg/day exists in our reach
 - Unknown load = Downstream load (66) upstream load (52) known load (8) = 6


Mass Balance Assessments Conducted to Date

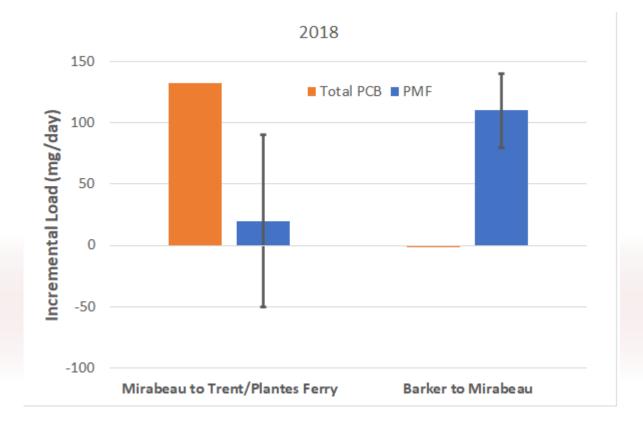
- Three synoptic low flow/dry weather surveys
 - August of 2014, 2015, and 2018
- Different spatial coverage each survey
- Different methods used to assess concentrations
 - Total PCBs, homologs, and PMF factors
 - Different blank correction approaches


Coeur d'Alene to Barker Road

- Only sampled in 2014
- No unidentified loads of any significance observed

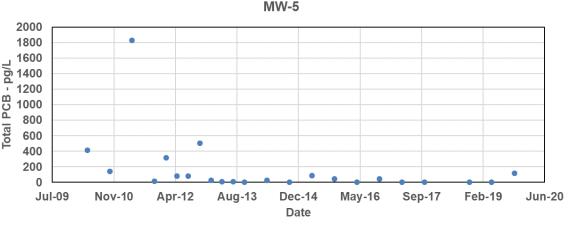

Barker to Trent/Plantes Ferry

- Large (>100 mg/day) incremental load consistently observed between Barker and Trent/Plantes Ferry
- 2018 results differ
 between approaches in terms of the portion of
 that load enters upstream
 of Kaiser site at Mirabeau

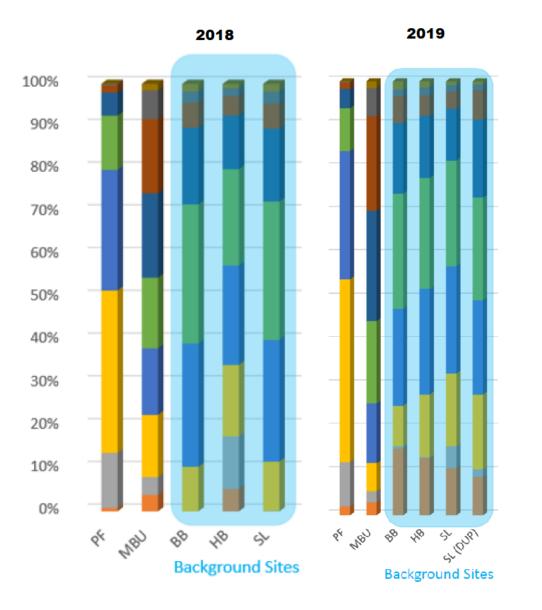

Concentration Distribution at Mirabeau

- Large majority of observed concentrations are <25 pg/l
 - Occasional value(s) above 200 pg/l
- Discrepancy in results between methods is due to how the 260 pg/l sample was handled
 - Total PCB approach rejected that sample due to 200 pg/l seen in the mono- and di-chloro homologs
 - PMF approach considered the nonanomalous portion of the sample


Barker to Trent/Plantes Ferry: 2018


- Total PCB approach ignores anomalous sample and concludes that the load all comes from below Mirabeau (i.e., from Kaiser)
- PMF approach gives credence to anomalous sample and concludes that the majority of load enters upstream from Mirabeau

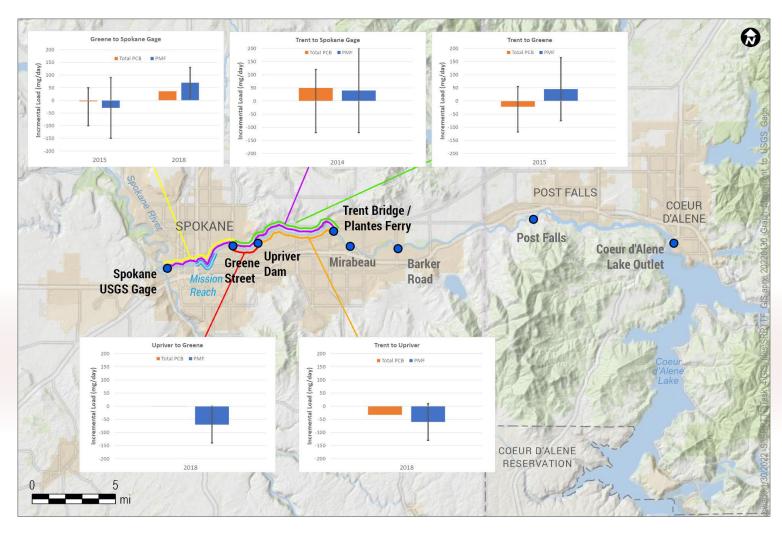
Potential Sources to Mirabeau


- Spokane Industrial Park (SIP), near Mirabeau, had historically used PCBs
 - PCBs >10,000 ppb found in 1994 in sludge from SIP's oxidation ditch
- Groundwater monitoring upgradient of Kaiser has shown high PCBs:
 - Kaiser upgradient well locations are not necessarily reflective of groundwater loading to Mirabeau
 - PCB concentrations in upgradient wells have been decreasing over time
 - Elevated PCBs in upgradient wells and at Mirabeau are spotty in frequency

Mirabeau Biofilm

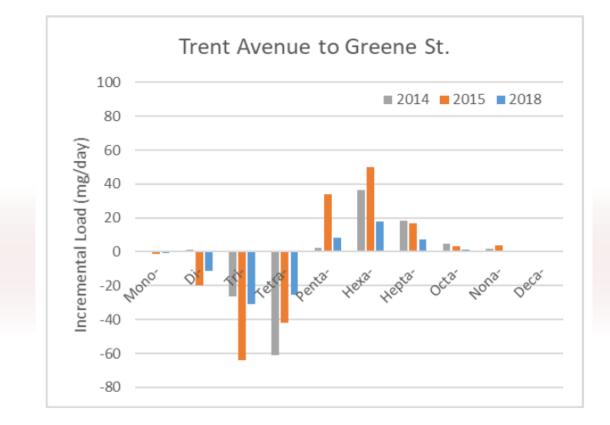
- Biofilm homologue fingerprints imply presence of a unique source entering above Mirabeau
 - Mirabeau (MBU) fingerprint looks distinctly different than those from background sites
- Strongly indicates presence of some new source of PCBs, but doesn't say much about load
 - Near-bank biofilm samples may be reflecting a highly localized source
 - Mid-channel water column measurement may be missing a load that has not mixed laterally across the stream

🔳 Mono 📕 Di 🔳 Tri 📕 Tetra 🔳 Penta 🔳 Hexa 🔳 Hepta 📕 Octa 🔳 Nona 🔳 Deca

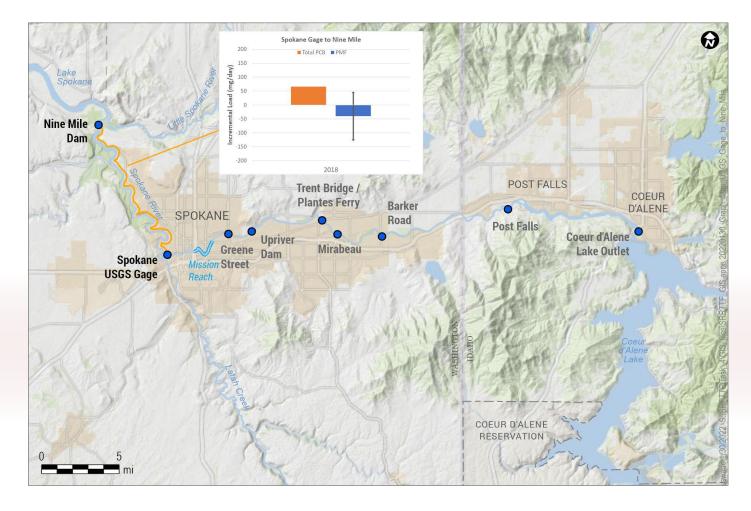

Barker to Trent/Plantes Ferry Summary

- Mass balance assessment shows consistent evidence of a large load entering somewhere in that segment
 - Much of the load comes from Kaiser
- Amount of load entering upstream of Kaiser confounded by infrequent high concentrations at Mirabeau
 - Biofilm data imply presence of a unique source above Mirabeau
 - Historical PCB contamination located in the vicinity

Presence of previously undefined load merits future consideration


Trent to USGS Gage

- Potential for additional load entering between Greene and USGS gage
 - very uncertain


Trent/Plantes Ferry to Greene St. Homologs

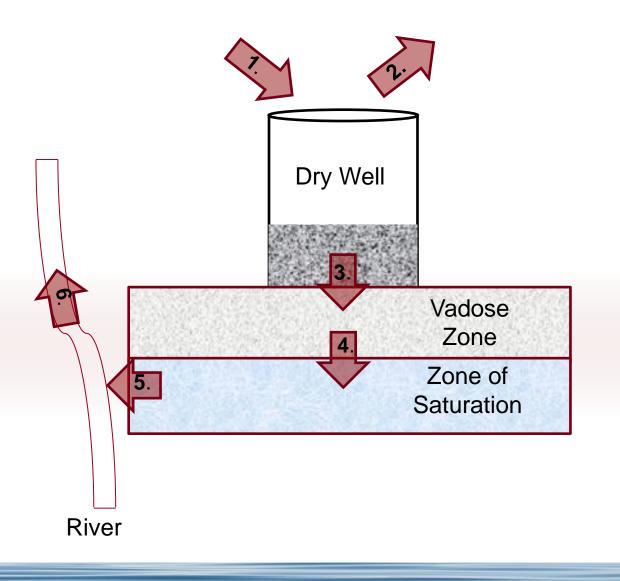
- Loading of higher-chlorinated homologs appears likely
 - Balanced by loss of lower-chlorinated homologs
- Three theories have been proposed
 - Preferential loss of lower-chlorinated homologs
 - Transport to groundwater
 - Volatilization at Upriver Dam
 - Groundwater interaction more complicated that currently assumed

USGS Gage to Nine Mile

- Only one survey 2018
 - Apparent inconsistency between models, although error bars would likely have significant overlap
- No definitive answer on presence of unidentified load

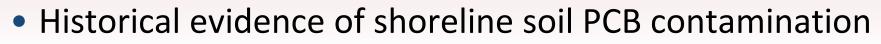
Conditions Other Than Dry Weather?

- Mass balance assessments have all been conducted during low flow, dry weather conditions
- Unknown loads that might exist under other conditions
 - Direct discharge of stormwater
 - Storm event monitoring has been conducted at many outfalls not really an unknown
 - Delivery of infiltrated stormwater loads via groundwater
 - High-flow mobilization of PCB sources

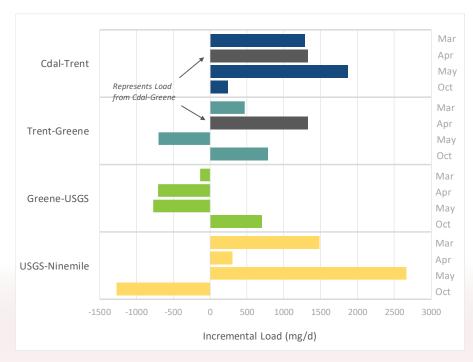

Delivery of Infiltrated Stormwater PCBs via Groundwater

- The large majority of stormwater in the Spokane watershed is not discharged directly to the River
 - Infiltrated to groundwater through dry wells or vegetative infiltration areas
- In most systems, infiltration effectively removes PCBs from transport to surface water via binding to organic matter in soils
 - Spokane soils have low organic carbon content

Conceptual Model of PCB delivery from Dry Wells to River


Components

- 1. Stormwater PCB load to well
- 2. Well contents Vactored out
- 3. PCB delivery to vadose zone
- 4. PCB delivery to zone of saturation
- 5. PCB delivery to river
- 6. PCB transport downstream

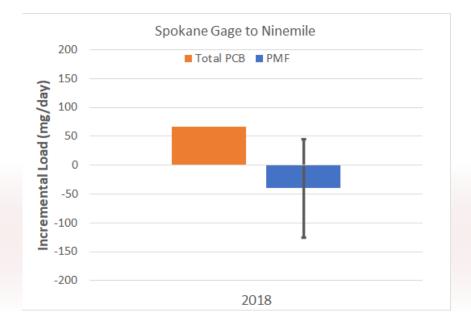


High-Flow Mobilization of PCB Sources

- Assessment of Ecology 2003-2004 SPMD and SRRTTF 2016 monthly data showed more load in the river than could be explained by known loads during higher river flow conditions
 - implies potential presence of a flow-dependent source
 - data not designed for mass balance due to limited number of samples, unsteady flow

"The soil sample for the 1993-94 PCB investigation was collected along the river shoreline
 Results showed elevated concentrations of PCB-1248 (4,700 ppb) and -1260 (3,900 ppb).
 All or part of the area sampled looked to be under water during high flow"

What We Know and Don't Know

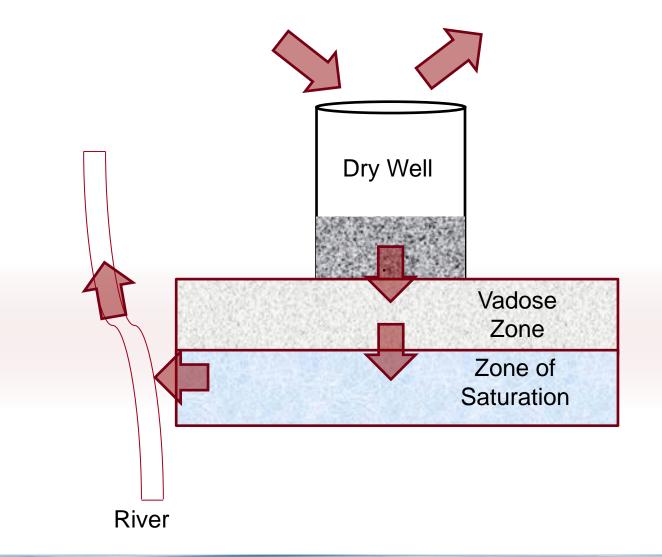

- Key "knowns"
 - Groundwater PCB load enters near Kaiser facility
- What we suspect
 - Presence of groundwater source directly upstream/upgradient of Kaiser
- What we don't know
 - Whether an unknown dry weather source exists downstream of the USGS gage
 - Groundwater/other interactions between Plantes Ferry and USGS gage
 - Groundwater loading of infiltrated stormwater
 - Presence of unknown loads during high flow periods

Candidate Studies: Groundwater PCB Load at Mirabeau

- Additional biofilm monitoring with higher spatial resolution
 - Would better define extent of impact, but not magnitude of load
- Additional water column sampling at Mirabeau
 - Grab samples or SPMD
- Others?

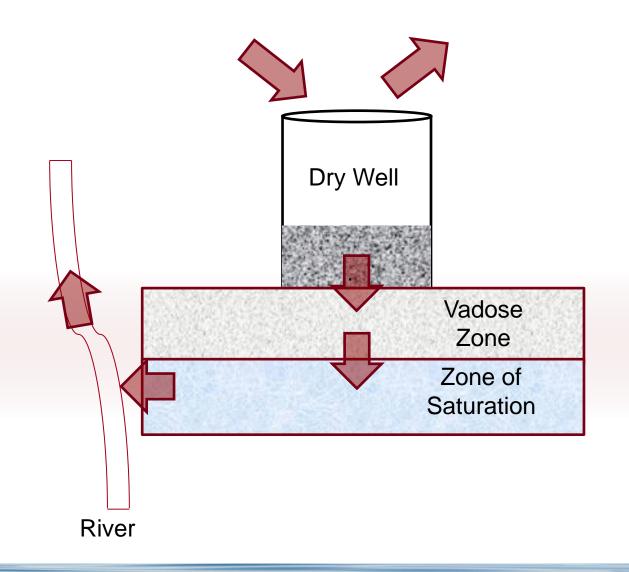
Candidate Studies: Dry Weather Source Downstream of USGS Gage

- Synoptic survey covering USGS gage to Nine Mile
 - Designed to supplement single 2018 mass balance assessment
 - Currently budgeted in 2021-2023 work plan
 - Perhaps not as urgent given results of PMF study
 - Others?



Candidate Studies: Groundwater/Other Interactions between Plante's Ferry and USGS Gage

- Further our understanding of groundwater hydrology
- Synoptic survey with greater spatial resolution
 - Combine with synoptic survey downstream of USGS gage
- Others?


Candidate Studies: Groundwater Loading of Infiltrated Stormwater

- Key Unknowns
 - Do soils in the vadose zone effectively trap PCBs?
 - Where does the infiltrate from dry wells enter the river?
 - What is the timing of delivery?

Potential Things That Could Be Studied

- Net PCB loading to dry wells
 - Mass in minus mass out
- Tracer study
- Sample groundwater
- Review how long it takes dry wells to drain
 - Provides some information on timing of load
- Review capacity of soils in the vadose zone to trap PCBs (i.e., organic carbon content)
 - Monitor PCBs in soil profile to determine whether they are PCB-saturated

Candidate Studies: High-Flow Mobilization of PCB Sources

- Conduct mass balance similar as what was done for low flow
 - Preliminarily scoped at TTWG level
 - Trent to Greene Street reach with an upstream reference station at Barker
 - Not included in 2021-2023 work plan
- Others?