Quality Assurance Project Plan
Addendum 1

Spokane River Toxics Reduction Strategy Study

Prepared for:
Spokane River Regional
Toxics Task Force

FINAL

Date: August 11, 2015
APPROVALS

Quality Assurance Project Plan – Addendum 1

August 11, 2015

Bud Leber, Kaiser Aluminum
SRRTTF ACE - President

Date: __________________

David Dilks, LimnoTech
Project Manager

Date: __________________

Jim Bellatty, Water Quality Section Manager
Eastern Region, Washington Department of Ecology

Date: 8/12/15

Robert Steed, Surface Water Ecologist
Coeur d’Alene Regional Office
Idaho Department of Environmental Quality

Date: __________________

Cathy Whiting, LimnoTech
Field Manager

Date: __________________

Carrie Turner, LimnoTech
Project Quality Assurance Officer

Date: __________________

Shea Hewage, Operations Director
AXYS Analytical Services

Date: __________________
APPROVALS
Quality Assurance Project Plan – Addendum 1

August 11, 2015

Bud Leber, Kaiser Aluminum
SRRTTF ACE - President

Date: 8/14/15

David Dilks, LimnoTech
Project Manager

Date: ______________

Jim Bellatty, Water Quality Section Manager
Eastern Region, Washington Department of Ecology

Date: ______________

Robert Steed, Surface Water Ecologist
Coeur d’Alene Regional Office
Idaho Department of Environmental Quality

Date: ______________

Cathy Whiting, LimnoTech
Field Manager

Date: ______________

Carrie Turner, LimnoTech
Project Quality Assurance Officer

Date: ______________

Shea Hewage, Operations Director
AXYS Analytical Services
APPROVALS
Quality Assurance Project Plan – Addendum 1
August 11, 2015

Bud Leber, Kaiser Aluminum
SRRTTF ACE - President

Date: ______________

David Dilks, LimnoTech
Project Manager

Date: 8/17/2015

Jim Bellatty, Water Quality Section Manager
Eastern Region, Washington Department of Ecology

Date: ______________

Robert Steed, Surface Water Ecologist
Coeur d’Alene Regional Office
Idaho Department of Environmental Quality

Date: ______________

Cathy Whiting, LimnoTech
Field Manager

Date: 8/17/15

Carrie Turner, LimnoTech
Project Quality Assurance Officer

Date: 8/17/15

Shea Hewage, Operations Director
AXYS Analytical Services

Date: ______________
Dale Hoover, Laboratory QA Manager
AXYS Analytical Services

John Kern, Laboratory Technical Director
SVL Analytical, Inc.

Michael Desmarais, Laboratory QC Manager
SVL Analytical, Inc.

Shawn Hinz, Project Manager
Gravity Environmental

Date: Aug. 14th, 2015
Dale Hoover, Laboratory QA Manager
AXYS Analytical Services

John Kern, Laboratory Technical Director
SVL Analytical, Inc.

Michael Desmarais, Laboratory QC Manager
SVL Analytical, Inc.

Shawn Hinz, Project Manager
Gravity Environmental

Date: ________________

Date: 08/13/2015

Date: 08-13-2015

Date: ________________
APPROVALS
Quality Assurance Project Plan – Addendum 1
August 11, 2015

Bud Leber, Kaiser Aluminum
SRRTTF ACE - President

Date:__________________

David Dilks, LimnoTech
Project Manager

Date:__________________

Jim Bellatty, Water Quality Section Manager
Eastern Region, Washington Department of Ecology

Date:__________________

Robert Steed, Surface Water Ecologist
Coeur d’Alene Regional Office
Idaho Department of Environmental Quality

Date:__________________

Cathy Whiting, LimnoTech
Field Manager

Date:__________________

Carrie Turner, LimnoTech
Project Quality Assurance Officer

Date:__________________

Shea Hewage, Operations Director
AXYS Analytical Services

Date: 17-AUG-2015
Spokane River Quality Assurance Project Plan – Addendum 1

Dale Hoover, Laboratory QA Manager
AXYS Analytical Services

Date: 17 – Aug – 2015

John Kern, Laboratory Technical Director
SVL Analytical, Inc.

Date: ____________________

Michael Desmarais, Laboratory QC Manager
SVL Analytical, Inc.

Date: ____________________

Shawn Hinz, Project Manager
Gravity Environmental

Date: ____________________
TABLE OF CONTENTS

Abstract ... 1

Introduction ... 1
 Project Organization .. 2
 Budget ... 5

Background .. 5
 Confidence Interval Testing .. 5
 2014 Synoptic Survey ... 6

2015 Dry Weather Survey ... 6
 Parameters .. 7
 Schedule ... 7

Quality Objectives and Criteria .. 9

Sampling Procedures .. 11
 Sampling Initiation .. 11
 Sample Collection ... 12
 Flow Measurements .. 12

Sample Handling and Custody .. 12

Analytical Methods .. 13

Quality Control ... 13
 Field Sampling Quality Control .. 13
 Field Measurements Quality Control .. 14
 Laboratory Analysis Quality Control .. 14

Corrective Action ... 15
 Field Measurements and Sample Collection ... 15
 Laboratory Analyses .. 15

Data Management ... 16

References ... 16
LIST OF FIGURES

Figure 1. Project Team Organization .. 5
Figure 2. Spokane River Monitoring Locations Map .. 8

LIST OF TABLES

Table 1. Project Team Responsibilities .. 3
Table 2. Spokane River Monitoring Locations ... 9
Table 3. Spokane River Monitoring Parameters ... 9
Table 4. PCB Data Quality Indicators .. 10
Table 5. Data Quality Indicators – DOC, TOC, TSS, TDS ... 10
Table 6. Dry Weather Sampling – PCB Sample Count .. 11
Table 7. Specification Limits of Field Measurement Instruments .. 11
Table 8. Spokane Weather Station Locations ... 12
Table 9. Guidelines for sample container preparation and preservation ... 13
Table 10. Parameters, Detection Limits, Expected Concentrations and Analytical Methods 13
Abstract

This Addendum to the Quality Assurance Project Plan (QAPP) corresponds to a continuation in 2015 of the work described in the original QAPP for 2014. The objective of 2015 Dry Weather Survey is to collect the necessary data to repeat the semi-quantitative mass balance assessment conducted using the 2014 Synoptic Survey data, focusing on the section of river between Barker Road and the Spokane USGS Gage. The 2014 QAPP and Sampling and Analysis Plan (SAP) (approved by Ecology and SRRTTF) are still applicable. The revisions contained in this Addendum consist of:

- Refining in-stream sampling locations in a narrower spatial area to focus on the area immediately upstream and downstream of potential groundwater contributions identified in 2014.
- Narrowing the temporal scope of sampling to a shorter duration but higher frequency than 2014, consistent with the narrower spatial scope.
- Revising the definition of a wet weather event to consider multiple precipitation gages, instead of the single precipitation gage used during 2014.
- Inclusion of manual stream flow monitoring (and Standard Operating Procedures for this monitoring) at sampling stations without flow gaging stations.

Introduction

The Spokane River Regional Toxics Task Force (SRRTTF) is developing a comprehensive plan to reduce toxic pollutants in the Spokane River, specifically polychlorinated biphenyls (PCBs). The comprehensive plan will be designed to identify specific management actions that can be undertaken to control pollutant loads such that water quality objectives can ultimately be attained. Comprehensive plans of this type require data capable of describing individual sources and site-specific processes that drive resulting concentrations. LimnoTech (2014a) described the overall data collection strategy for a first year of monitoring, based on the work conducted to identify key gaps in the existing data set and issues addressed at a December 2013 monitoring workshop.

A Synoptic Survey was conducted in 2014 to identify potentially significant dry weather sources of PCBs to the Spokane River between Lake Coeur d’Alene and Nine Mile Dam. The results of this study showed the strong likelihood of a groundwater PCB source between Barker Road and the Trent Avenue Bridge, and the potential of an additional groundwater PCB source between the Trent Avenue Bridge and the Spokane USGS gage (LimnoTech, 2015). The SRRTTF Technical Track Work Group recommended, and the Task Force as a whole approved (SRRTTF, 2015a, 2015b), conducting a 2015 Synoptic Survey to confirm the findings of the 2014 Synoptic Survey over a narrower spatial scope.

This QAPP addendum has been prepared to provide the revised sampling plan and to document the procedural and analytical requirements for the 2015 Dry Weather Survey to take place in August 2015. The QAPP addendum also address logistical problems encountered during the 2014 Synoptic Survey, such as accurate stream flow measurements and possible impacts from precipitation events. The Quality Assurance/Quality Control procedures outlined in the 2014 QAPP will be followed for this sampling work (LimnoTech, 2014b).
Project Organization

Each of the organizations included in the project team has established an organizational structure for providing technical direction and administrative control to accomplish quality-related activities for the development of the project.

Key project personnel and their corresponding responsibilities are listed in Table 1 below and shown in Figure 1.
Table 1. Project Team Responsibilities

<table>
<thead>
<tr>
<th>Name/Affiliation</th>
<th>Project Title/Responsibility</th>
</tr>
</thead>
</table>
| SRRTTF | **Oversight and direction**
| | Secure funding for project activities
| | Review and utilize project results
| | Facilitate communications and provide public access to information
| | Develop recommendations for controlling and reducing sources
| | Develop comprehensive plan |
| Bud Leber – SRRTTF-ACE | **SRRTTF ACE President**
| | Manage contracts: review and approve project specifications
| | Ensure project is completed in timely manner
| | Receive deliverables and reports
| | Manage data on behalf of SRRTTF
| | Communicate with SRRTTF
| | Communicate quality assurance issues with SRRTTF
| | Ensure access to project information on the SRRTTF website
| | Facilitate upload of data to EIM |
| David Dilks - LimnoTech | **Project Manager**
| | General oversight
| | Review/approval of all work products prior to delivery to SRRTTF-ACE
| | Ensures that work is done in accordance with QAPP and SAP
| | Reviews project with Laboratory Operations Directors prior to sampling
| | Provides oversight of field activities (variances, documentation, QA/QC)
| | Arranges for system audits |
| Jim Bellatty, Adriane Borgias – | **Advisor**
| Department of Ecology | Reviews/approves QAPP |
| Robert Steed – Idaho DEQ | **Advisor**
| | Reviews/approves QAPP |
| Cathy Whiting - LimnoTech | **Field Manager: Synoptic Survey and Quarterly sampling events**
| | Direct all field activities, ensure samples handled in accordance with SAP
| | Data screening, evaluation, validation, and usability determination
| | Manage field variances, nonconformance, and corrective actions
| | Manage reports, documentation, Project QA/QC file, and electronic data
| | Communicates project specifics with Project Manager
| | Conducts training of field sampling crew |
| Carrie Turner - LimnoTech | **Project Quality Assurance Officer**
| | Performs systematic evaluation of data quality
| | Receives notices, initiates investigation, and documents nonconformance with DQOs
| | Manage the Project QA/QC file |
| LimnoTech | **Independent Auditor**
| | Perform a critical, written evaluation of the work product
| | Conducts audits at the direction of the Project Manager |
| Shea Hewage – AXYS Analytical Services | **Laboratory Operations Director**
| | Sample analysis
| | Serves as main point of contact for laboratory
| | Manages laboratory Quality Assurance systems
| | Final review and validation of data and field systems
| | Initiates corrective actions for nonconformance
| | Communicates with Project Manager and SRRTTF-ACE |
| Richard Grace – AXYS | **Laboratory Project Director**
| | Oversight of all laboratory commercial and technical project specifications |
| Sean Campbell – AXYS Analytical Services| **Laboratory Project Manager**
| | Serves as main point of contact for laboratory
<p>| | Assists Laboratory Operations Director with management of laboratory QA systems |</p>
<table>
<thead>
<tr>
<th>Name/Affiliation</th>
<th>Project Title/Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dale Hoover—AXYS Analytical</td>
<td>Laboratory QA/QC Managers
Manages Laboratory QA/QC activities
Reviews and verifies field records, laboratory records and laboratory data
Addresses nonconformance and carries out corrective actions at the laboratory.</td>
</tr>
<tr>
<td>Services</td>
<td></td>
</tr>
<tr>
<td>John Kern—SVL Analytical, Inc.</td>
<td>Technical Director
Sample analysis
Serves as main point of contact for laboratory
Manages laboratory Quality Assurance systems
Final review and validation of data and field systems
Initiates corrective actions for nonconformance
Communicates with Project Managers and SRRTTF-ACE</td>
</tr>
<tr>
<td>Michael Desmarais—SVL Analytical, Inc.</td>
<td>Laboratory QA/QC Manager
Manages Laboratory QA/QC activities
Reviews and verifies field records, laboratory records and laboratory data
Addresses non-conformances and carries out corrective actions at the laboratory.</td>
</tr>
<tr>
<td>Christine Meyer—SVL Analytical, Inc.</td>
<td>Laboratory Project Manager
Serves as main point of contact for laboratory
Assists Laboratory Operations Director with management of laboratory QA systems</td>
</tr>
<tr>
<td>Shawn Hinz—Gravity Environmental</td>
<td>Conducts Sample Collection
Collects samples in accordance with QAPP and SAP
 Prepares and follows the Invasive Species Plan
 Prepares and administers Health and Safety Plan for employees
Maintains equipment logs, field records and data sheets
Transfers field data to Field Manager
Manages field equipment, conducts calibrations
Addresses nonconformance findings and responds to corrective actions</td>
</tr>
</tbody>
</table>

The lines of reporting for the organizations in the project are shown in the organization chart (Figure 1). Each team member has responsibility for performance of assigned quality control duties in the course of accomplishing identified activities. The quality control duties include:

- Completing the assigned task on or before schedule and in a quality manner in accordance with established procedures; and
- Ascertaining that the work performed is technically correct and meets all aspects of the QAPP.
Figure 1. Project Team Organization

Budget

The total budget for this project is $95,000. This includes PCB analysis by AXYS Analytical Services, conventional parameter analyses by SVL Analytical, field sampling by Gravity Environmental, and oversight and data analysis by LimnoTech.

Background

The Spokane River watershed has existing PCB monitoring data, which provide an estimate of the amount of PCBs entering the Spokane River from contributing source area categories (e.g. stormwater, WWTPs). Based on the Spokane River PCB Source Assessment 2004-2007 (Serdar et al, 2011), only 43% of the PCB source loading to the river between Stateline (RM 96.1) and Long Lake Dam (RM 33.9) could be identified. This is due in part to the uncertainty of the analyses and the high variability in the data. The existing data indicate that sources of PCBs are very diffuse throughout the watershed, such that more data will be needed to support development of a management plan with targeted control actions (LimnoTech, 2013). Two studies were conducted in 2014, the Confidence Interval Testing and the Synoptic Survey.

Confidence Interval Testing

Confidence Interval Testing was performed in May 2014 to provide information for the 2014 sampling program. The Confidence Interval Testing was performed by Ecology as an initial task to confirm the appropriate sample volumes and frequencies. This initial sampling effort was designed to generate
information both on the temporal variability of PCB concentrations, as well as estimates of measurement uncertainty for the low PCB concentrations occurring in the Spokane River.

Five sampling events were conducted in May 2014 on the Spokane River at the State Park Parcel at River Mile 87, located between Mirabeau and Sullivan Parks (referred to as the Mirabeau Park site) and three sampling events at the Lake Coeur d’Alene outlet. Samples were collected for both discrete and composite analyses at Mirabeau Park, while discrete samples were collected at the Lake Coeur d’Alene outlet.

The results showed that PCB concentrations were very low at both stations, with lab blank-corrected concentrations ranging from 7.7 to 54 pg/l at the Lake Coeur d’Alene Outlet and 6.2 to 80 pg/l at Mirabeau Park. Concentrations observed in trip blanks and laboratory blanks were at similar levels to those observed in field samples, making it difficult to distinguish an environmental signal from the noise in laboratory measurement. Based on these results, it was determined that the PCB concentrations were predicted to be significantly higher during the August 2014 Synoptic Survey than they were during the May sampling, due to much lower river flows and consequently lower dilution of weather-independent external PCB sources. Therefore, the data would be sufficient to support a semi-quantitative mass balance assessment and be able to identify stream reaches where incremental loads lead to a significant increase in river concentrations.

2014 Synoptic Survey

The 2014 Synoptic Survey consisted of dry weather sampling in August 2014, at multiple locations in the Spokane River upstream of Lake Spokane. These stations consisted of river locations with gaging stations, NPDES permitted sources and the Latah (Hangman) Creek mouth. Multiple river sampling events were conducted (with some compositing to reduce analytical costs) over a two week sampling period to reduce the uncertainty in loading estimates caused by day to day variability in concentrations.

The results showed that total PCB concentrations are mostly below 50 pg/l from the Lake Coeur d’Alene outlet to the Barker Road Bridge. Concentrations are generally between 100 and 200 pg/l from the Trent Avenue Bridge downstream to Nine Mile Dam. Approximately one quarter of all samples exceed the Washington water quality standard of 170 pg/l, while all of the samples exceed the downstream Spokane Tribe of Indians’ water quality standard of 1.3 pg/l.

2015 Dry Weather Survey

The objective of 2015 Dry Weather Survey is to collect the necessary data to repeat the semi-quantitative mass balance assessment conducted using the 2014 Synoptic Survey data, focusing on the section of river between Barker Road and the Spokane USGS Gage. The 2015 sampling locations are based on the results of 2014 Synoptic Survey, which showed the strong likelihood of a groundwater PCB source between Barker Road and the Trent Avenue Bridge, and the potential of an additional groundwater PCB source between the Trent Avenue Bridge and the Spokane USGS gage (LimnoTech, 2015). The in-stream sampling locations have been placed in a narrower spatial area to further identify potential groundwater contributions.

Measurement of river flow in conjunction with water quality will allow concentration measurements to be converted to mass loads. Flow measurements will be made at the locations that do not have a flow gaging station. The Dry Weather Survey sample locations are summarized in Table 2. River locations are identified as in-stream samples and NPDES permitted sources are identified as discharge samples. The point of discharge is determined to be the location identified in the dischargers NPDES permit or as determined in the field by the sampling team and approved by the project manager. The sample locations are shown in Figure 2.
Sampling will be conducted during the summer low flow period (August) to minimize potential confounding effects of wet weather sources.

Parameters

The study parameters include PCB congeners, total suspended solids (TSS), total dissolved solids (TDS), total organic carbon (TOC) and dissolved organic carbon (DOC). TSS, TOC and DOC will be used to provide information on the distribution of PCBs among various forms (i.e. purely dissolved, adsorbed to solids, sorbed to DOC), which will be needed if a fate and transport model is developed. TDS can be used as a tracer to provide information on groundwater contribution to the river. The parameters included in the 2105 Dry Weather Survey are listed in Table 3.

Schedule

Key milestones associated with the project are described below along with their targeted completion dates:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRRTTF Technical Track Work Group Review</td>
<td>August 5, 2015</td>
</tr>
<tr>
<td>Conduct sampling event</td>
<td>August 17, 2015</td>
</tr>
<tr>
<td>Draft Report</td>
<td>December 1, 2015</td>
</tr>
<tr>
<td>Final Report</td>
<td>February 28, 2016</td>
</tr>
</tbody>
</table>
Figure 2. Spokane River Monitoring Locations Map
Table 2: Spokane River Monitoring Locations

<table>
<thead>
<tr>
<th>Site</th>
<th>Location</th>
<th>Type of Sample</th>
<th>USGS Gage</th>
<th>Manual Flow Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR-3</td>
<td>Spokane River at Spokane</td>
<td>In-stream</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SR-4</td>
<td>Spokane River at Greene Street Bridge</td>
<td>In-stream</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SR-5</td>
<td>Spokane County Regional Water Reclamation Facility</td>
<td>Discharge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR-6</td>
<td>Inland Empire Paper</td>
<td>Discharge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR-7</td>
<td>Spokane River at Below Trent Bridge</td>
<td>In-stream</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SR-8</td>
<td>Kaiser Aluminum</td>
<td>Discharge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR-8a</td>
<td>Mirabeau Park</td>
<td>In-Stream</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SR-9</td>
<td>Spokane River at Barker Road Bridge</td>
<td>In-stream</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Spokane River Monitoring Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type of Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polychlorinated Biphenyl (PCB)– 209 Congeners</td>
<td>Laboratory analytical</td>
</tr>
<tr>
<td>Dissolved Organic Carbon (DOC)</td>
<td>Laboratory analytical</td>
</tr>
<tr>
<td>Total Organic Carbon (TOC)</td>
<td>Laboratory analytical</td>
</tr>
<tr>
<td>Total Suspended Solids (TSS)</td>
<td>Laboratory analytical</td>
</tr>
<tr>
<td>Total Dissolved Solids (TDS)</td>
<td>Laboratory analytical</td>
</tr>
<tr>
<td>Temperature</td>
<td>In-situ measurement</td>
</tr>
<tr>
<td>Conductivity</td>
<td>In-situ measurement</td>
</tr>
<tr>
<td>pH</td>
<td>In-situ measurement</td>
</tr>
<tr>
<td>Dissolved Oxygen (DO)</td>
<td>In-situ measurement</td>
</tr>
<tr>
<td>Turbidity</td>
<td>In-situ measurement</td>
</tr>
</tbody>
</table>

Quality Objectives and Criteria

The data quality objectives are intended to clarify the study’s technical and quality objectives, define the appropriate type of data, and specify tolerable levels of potential decision errors that will be used as the basis for establishing the quality and quantity of the data needed to support decisions. The data quality objectives for this study have been developed in order to ensure that the data collected are of acceptable quality and support the objectives of the project. The data quality objectives are described in Section 1.4 of the 2014 QAPP (LimnoTech, 2014b).

The 2015 data will be evaluated relative to the data quality objectives outlined in the 2014 QAPP (LimnoTech, 2014b). Data quality will be interpreted using the Data Quality Indicators (DQIs) which are the quantitative statistics and qualitative descriptors used to interpret the degree of acceptability of the data to the user. The DQIs include bias and precision, representativeness, completeness, comparability, and the required detection limits (sensitivity) for the analytical methods.

The Data Quality Indicators and the measurement performance criteria for each are provided in Tables 4 and 5. The number of samples collected per location is included in Table 6. The specifications for field instruments are included in Table 7.

It should be noted that there is no standard blank correction method, and numerous approaches are utilized, both nationally and within the Spokane River Basin. The selection of the most appropriate blank correction...
methodology must consider factors such as: study objectives, sample matrix, sampling methodology, expected range of results, and tolerance for biased results.

Table 4. PCB Data Quality Indicators

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Analytical Method</th>
<th>Lab Control Sample</th>
<th>Matrix Spikes</th>
<th>Lab Blanks</th>
<th>Replicate Samples</th>
<th>Matrix Spike Replicate</th>
<th>Detection Limit</th>
<th>Completeness Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB Congeners</td>
<td>EPA 1668C /AXYS Method MLA-010 Rev 11</td>
<td>% recovery limits</td>
<td>% recovery limits</td>
<td>% recovery limits</td>
<td>Concentration (pg/L)</td>
<td>RPD (valid for congeners > 10x EDL)</td>
<td>Concentration (pg/L)</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>50-145%</td>
<td>50-150%</td>
<td>25-150%*</td>
<td>Maximum = 127 pg/L (total) Laboratory will B-qualify congeners results < 3x the concentration in an associated blank</td>
<td>50%</td>
<td>1-20</td>
<td>95</td>
<td></td>
</tr>
</tbody>
</table>

*Per AXYS Method MLA-010 Revision 11 for OPR, internal standards and labeled compounds.

Table 5. Data Quality Indicators – DOC, TOC, TSS, TDS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Analytical Method</th>
<th>Lab Control Sample</th>
<th>Matrix Spikes</th>
<th>Lab Blanks</th>
<th>Replicate Samples</th>
<th>Matrix Spike Replicate</th>
<th>Detection Limit</th>
<th>Completeness Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOC</td>
<td>EPA 415.3</td>
<td>80-120%</td>
<td>80-120%</td>
<td>< ½ EQL</td>
<td>30%</td>
<td>20%</td>
<td>1 mg/L</td>
<td>95</td>
</tr>
<tr>
<td>TOC</td>
<td>EPA 415.1</td>
<td>80-120%</td>
<td>80-120%</td>
<td>< ½ EQL</td>
<td>30%</td>
<td>20%</td>
<td>1 mg/L</td>
<td>95</td>
</tr>
<tr>
<td>TSS</td>
<td>EPA 160.2</td>
<td>80-120%</td>
<td>--</td>
<td>< ½ EQL</td>
<td>30%</td>
<td>--</td>
<td>1 mg/L</td>
<td>95</td>
</tr>
<tr>
<td>TDS</td>
<td>EPA 160.1</td>
<td>80-120%</td>
<td>--</td>
<td>< ½ EQL</td>
<td>30%</td>
<td>--</td>
<td>1 mg/L</td>
<td>95</td>
</tr>
</tbody>
</table>
Table 6. Dry Weather Sampling – PCB Sample Count

<table>
<thead>
<tr>
<th>Sampling Location</th>
<th>Number of Samples</th>
<th>Duplicates</th>
<th>Composite Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barker Road</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Mirabeau Park</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Trent Bridge</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Green Street Gage</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Spokane Gage</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Kaiser Aluminum</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Inland Empire Paper</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Spokane County WRF</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 7. Specification Limits of Field Measurement Instruments

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Instrument</th>
<th>Range</th>
<th>Accuracy</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Hydrolab</td>
<td>-5 to 50°C</td>
<td>±0.10°C</td>
<td>0.01°C</td>
</tr>
<tr>
<td></td>
<td>YSI</td>
<td>-5 to 45°C</td>
<td>±0.15°C</td>
<td>0.01°C</td>
</tr>
<tr>
<td>pH</td>
<td>Hydrolab</td>
<td>0 to 14 units</td>
<td>±0.2 units</td>
<td>0.01 units</td>
</tr>
<tr>
<td></td>
<td>YSI</td>
<td>0 to 14 units</td>
<td>±0.2 units</td>
<td>0.01 units</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>Hydrolab</td>
<td>0 to 20 mg/L</td>
<td>±0.2 mg/L</td>
<td>0.01 mg/L</td>
</tr>
<tr>
<td></td>
<td>YSI</td>
<td>0 to 20 mg/L</td>
<td>±0.2 mg/L</td>
<td>0.01 mg/L</td>
</tr>
<tr>
<td>Conductivity</td>
<td>Hydrolab</td>
<td>0 to 100 mS/cm</td>
<td>±0.5% of range</td>
<td>1.0 uS/cm</td>
</tr>
<tr>
<td></td>
<td>YSI</td>
<td>0 to 100 mS/cm</td>
<td>±1% of range</td>
<td>1.0 uS/cm</td>
</tr>
<tr>
<td>Turbidity</td>
<td>YSI</td>
<td>0-1000 NTU</td>
<td>±5% of range</td>
<td>0.1 units</td>
</tr>
</tbody>
</table>

Sampling Procedures

Sampling Initiation

The initiation of monitoring is designed with the intent to capture ideal dry weather conditions if possible, yet ensure that monitoring be conducted during the low flow period. Monitoring is scheduled to begin in mid-August. Prior to initiation of sampling the following conditions must be met:

- Two days have passed since the last rainfall greater than an average of 0.2 inches at the reporting precipitation stations in the City of Spokane MS4/CSO drainage basin. These stations are listed in Table 8.
- The local weather forecast contains no days with a predicted likelihood of rainfall greater than 50% for the following three days.

Once sampling is initiated, samples will be collected every day over a five day period. At each sampling station a single sample will be collected for discrete analysis and another sample to be analyzed as part of a composite of all five samples collected at that station, for all parameters. Compositing will be conducted by the laboratory.
Wastewater effluents will be sampled as grab samples on three separate dates, spaced evenly over the dry weather sampling period (Days 1, 3 and 5). Each sampling event will collect a single sample for discrete analysis and another sample to be analyzed as part of a composite of all three samples collected at that station.

If a precipitation event exceeding an average of 0.2 inches at all weather stations (Table 8) occurs during the sampling period the following changes will be made to the sampling plan:

- If a precipitation event greater than 0.2 inches of precipitation (average of all weather stations) occurs after four days of sampling have been completed, the fifth day of sampling will be aborted.
- If a precipitation event greater than 0.2 inches of precipitation (average of all weather stations) occurs after three days or less of sampling have been completed, sampling will be suspended for two days and then resumed to complete five days of sampling.

Sample Collection

All sampling procedures described in the 2014 SAP (LimnoTech, 2014c) will be followed.

Flow Measurements

Manual flow measurements will be collected at the following locations:

- Barker Road
- Mirabeau Park
- Trent Bridge Gage

Flow measurements will be collected at the time of each sample collection using a Sontek M-9.

The Standard Operating Procedure for stream flow measurement is included in Appendix A.

Table 8. Spokane Weather Station Locations

<table>
<thead>
<tr>
<th>Site</th>
<th>Weather Station Location</th>
<th>Latitude/Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Spokane, WA</td>
<td>47.65°N, 117.43°W</td>
</tr>
<tr>
<td>2</td>
<td>Corbin Park, Spokane, WA</td>
<td>47.68°N, 117.42°W</td>
</tr>
<tr>
<td>3</td>
<td>Kendall Yards, Spokane, WA</td>
<td>47.66°N, 117.44°W</td>
</tr>
<tr>
<td>4</td>
<td>River Run, Spokane, WA</td>
<td>47.67°N, 117.46°W</td>
</tr>
<tr>
<td>5</td>
<td>West Central, Spokane, WA</td>
<td>47.67°N, 117.45°W</td>
</tr>
<tr>
<td>6</td>
<td>Lincoln Heights, Spokane, WA</td>
<td>47.64°N, 117.36°W</td>
</tr>
<tr>
<td>7</td>
<td>South Hill, Spokane, WA</td>
<td>47.62°N, 117.35°W</td>
</tr>
<tr>
<td>8</td>
<td>Felts Field</td>
<td>47.68°N, 117.32°W</td>
</tr>
</tbody>
</table>

Sample Handling and Custody

Sample handling will be the responsibility of Gravity Environmental and will be performed using methods as specified in the 2014 SAP (LimnoTech, 2014c), so that representative samples are collected, stored, and submitted to the laboratory for analysis. Sample containers, volumes, preservatives and holding times are summarized in Table 9. Proper sample handling and custody procedures will be employed as discussed in the 2014 QAPP (LimnoTech, 2014b).
Table 9. Guidelines for sample container preparation and preservation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Container</th>
<th>Volume</th>
<th>Preservative</th>
<th>Holding Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB</td>
<td>Amber glass</td>
<td>2.36 L</td>
<td>4°C</td>
<td>1 year</td>
</tr>
<tr>
<td>TSS</td>
<td>Polypropylene</td>
<td>1 L</td>
<td>4°C</td>
<td>7 days</td>
</tr>
<tr>
<td>TDS</td>
<td>Polypropylene</td>
<td>500 ml</td>
<td>4°C</td>
<td>7 days</td>
</tr>
<tr>
<td>TOC</td>
<td>Amber glass</td>
<td>40 ml</td>
<td>4°C, H2SO4</td>
<td>28 days</td>
</tr>
<tr>
<td>DOC</td>
<td>Amber glass</td>
<td>40 ml</td>
<td>4°C</td>
<td>28 days</td>
</tr>
</tbody>
</table>

Analytical Methods

The following section details the aspects of the analytical requirements, ensuring that appropriate analytical methods are employed. Tables 4 and 5 summarize the analytical methods to be used by the laboratory. Table 9 displays the required container type, sample volume, preservation, and hold time for the study parameters according to the previously referenced methods. AXYS Analytical Services and SVL Analytical, Inc. will provide sample containers from a commercial supplier. All sample containers will be new and pre-cleaned by the supplier. In addition, the contract laboratories will provide sample labels for each bottle. The detection limits, expected concentrations, and analytical methods are included in Table 10 (Ecology, 2014).

Table 10. Parameters, Detection Limits, Expected Concentrations and Analytical Methods

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Matrix</th>
<th>Detection Limit</th>
<th>Expected Concentrations</th>
<th>Number of Samples</th>
<th>Analytical Method</th>
<th>Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB (pg/L)</td>
<td>Water</td>
<td>1-20</td>
<td>10-10,000 total</td>
<td>55</td>
<td>EPA 1668C</td>
<td>AXYS Analytical Services</td>
</tr>
<tr>
<td>TSS (mg/L)</td>
<td>Water</td>
<td>1</td>
<td>1-80</td>
<td>47</td>
<td>SM-2540D</td>
<td>SVL Analytical, Inc.</td>
</tr>
<tr>
<td>TDS (mg/L)</td>
<td>Water</td>
<td>1</td>
<td>1-80</td>
<td>47</td>
<td>SM-2540C</td>
<td>SVL Analytical, Inc.</td>
</tr>
<tr>
<td>TOC (mg/L)</td>
<td>Water</td>
<td>1</td>
<td>1-2</td>
<td>47</td>
<td>SM-5310B</td>
<td>SVL Analytical, Inc.</td>
</tr>
<tr>
<td>DOC (mg/L)</td>
<td>Water</td>
<td>1</td>
<td>1-2</td>
<td>47</td>
<td>SM-5310B</td>
<td>SVL Analytical, Inc.</td>
</tr>
</tbody>
</table>

Quality Control

Analytical quality control will be performed in accordance with the specified analytical methods and as presented in the 2014 QAPP (LimnoTech, 2014b).

Field Sampling Quality Control

Field sampling QC consists of collecting field QC samples to help evaluate conditions resulting from field activities. Field QC is intended to support a number of data quality goals:

- Combined contamination from field sampling through sample receipt at the laboratory (to assess potential contamination from ambient conditions, sample containers, sample transport, and laboratory analysis) – assessed using trip blanks/transfer blanks.
• Combined sampling and analysis technique variability, as well as sample heterogeneity – assessed using field replicates.

Trip Blanks – Trip blanks will be used to evaluate whether contaminants have been introduced into the samples due to exposure to ambient conditions or from the sample containers themselves. A trip blank is a controlled water sample, with minimal concentrations of contaminants of concern, which is produced by the laboratory. The trip blank accompanies the sampling equipment into the field and is stored with the analytical samples. If transfer blanks are required, they will be obtained by pouring deionized water into the sample container in the field, preserved and shipped to the laboratory with the field samples. Trip/transfer blanks will be collected at a frequency of 10% or one blank per sampling round.

Trip/transfer blanks, as described above, will be preserved, packaged, and sealed in the same manner described for the surface water samples. A separate sample number and station number will be assigned to each blank. The samples will be submitted as “blind” samples to the laboratory for analysis. If target analytes are found in the blanks above the criteria, sampling and handling procedures will be reevaluated and corrective actions taken. These may consist of, but are not limited to, obtaining sampling containers from new sources, training of personnel, discussions with the laboratory, invalidation of results, greater attention to detail during the next sampling event, or other procedures considered appropriate.

Field Replicate Samples – Field replicate samples will be collected to evaluate the precision of sample collection through analysis. Field replicates will be collected at designated sample locations by filling two distinct sample containers for each analysis. Field replicate samples will be preserved, packaged, and sealed in the same manner described for the surface water samples. A separate sample number and station number will be assigned to each replicate. The samples will be submitted as “blind” samples to the laboratory for analysis.

Field replicates will be collected for each analytical parameter at a frequency of 10% or one field replicate per sampling round, whichever is less. The replicate samples will be collected at random locations for each sampling event. If the acceptance criteria are exceeded, field sampling and handling procedures will be evaluated, and problems corrected through greater attention to detail, additional training, revised sampling techniques, or whatever appears to be appropriate to correct the problem.

Field Measurements Quality Control

Quality control requirements for field measurements are provided in Table 5.

Field instrumentation will be calibrated according to the manufacturer’s requirements and will be calibrated daily. If a field instrument cannot be calibrated it should not be used.

Laboratory Analysis Quality Control

Laboratory QC is the responsibility of the laboratory personnel and QA/QC departments of AXYS Analytical Services and SVL Analytical, Inc. The laboratory’s QA Manual details the QA/QC procedures it follows. The following elements are part of standard laboratory quality control practices:

• Analysis of method blanks
• Analysis of laboratory control samples
• Instrument calibration (including initial calibration, calibration blanks, and calibration verification)
• Analysis of matrix spikes (TOC/DOC)
• Analysis of duplicates
The data quality objectives for AXYS Analytical Services and SVL Analytical, Inc. (including frequency, QC acceptance limits, and corrective actions if the acceptance limits are exceeded) are detailed in 2014 QAPP (LimnoTech, 2014b). Any excursions from these objectives must be documented by the laboratory and reported to the Project Manager/Project QAO.

Corrective Action

Corrective actions will be implemented as required to rectify problems identified during the course of normal field and laboratory operations. Possible problems requiring corrective action include:

- Equipment malfunctions;
- Analytical methodology errors; or
- Non-compliance with quality control systems.

Equipment and analytical problems that require corrective action may occur during sampling and sample handling, sample preparation, and laboratory analysis.

For non-compliance problems, steps for corrective action will be developed and implemented at the time the problem is identified. The individual who identifies the problem is responsible for immediately notifying the Project Manager and the Project QAO.

Any non-conformance with the established quality control procedures outlined in the 2014 QAPP (LimnoTech, 2014b) will be identified and corrected. The Project Manager will ensure that a Corrective Action Memorandum is issued for each non-conformance condition. All non-conformance memoranda will be discussed in the final report submitted to the SRRTTF-ACE.

Field Measurements and Sample Collection

Project staff will be responsible for reporting any suspected QA non-conformance or deficiencies to the Field Manager. The Field Manager will be responsible for assessing the suspected problems in consultation with the Project Manager to review the sampling protocols and provide additional training if necessary. If it is determined that the situation warrants a corrective action, then a Corrective Action Memorandum will be issued by the Field Manager.

The Field Manager will be responsible for ensuring that the corrective action for non-conformance takes place by:

- Evaluating all reported incidences of non-conformance;
- Controlling additional work on nonconforming items;
- Determining what corrective action is needed;
- Maintaining a log of non-conformance issues;
- Reviewing responses to corrective action memoranda;
- Ensuring that copies of corrective action memoranda and responses are included in the project files.

No additional work will be performed until appropriate corrective action has been implemented and documented in response to the corrective action memoranda.

Laboratory Analyses

Corrective actions are required whenever laboratory conditions, instrument malfunction or personnel situations have led or could potentially lead to errors in the analytical data. The corrective action taken will be dependent on the analysis and the event.
Laboratory personnel are alerted that corrective actions may be necessary if:

- QC data are outside the acceptable range for precision and accuracy;
- Blanks contain target analyses above acceptable levels;
- Undesirable trends are detected in spike recoveries or RPD between duplicates;
- Excessive interference is noted; or
- Deficiencies are detected by the Independent Auditor during laboratory system audits as described.

Corrective action procedures are often handled at the bench level by the analyst, who reviews the preparation or extraction procedure for possible errors, checks the instrument calibration, spike and calibration mixes, and instrument sensitivity, etc.

Corrective action taken within each laboratory is the responsibility of the Laboratory Operations/Technical Director. When a problem occurs, the Laboratory Technical Director informs the Project Manager about the problem and the steps taken to resolve it. Once the problem is resolved, full documentation of the corrective action procedure will be submitted to the Project Manager.

All non-conformance memoranda initiated by the contract laboratory will be discussed in the case narrative or included in the laboratory reports. The Project Manager will follow-up on all corrective actions that are taken to ensure that the memoranda are accurate.

Data Management

Data management will be conducted as described in the 2014 QAPP (LimnoTech, 2014b).

References

APPENDIX A

FLOW MEASUREMENT – STANDARD OPERATING PROCEDURE
This is a quick reference guide to get started with the standard RiverSurveyor ADP (S5 or M9) system. The use and setup of additional optional system components are detailed on other Quick Start Guides.

For more detailed information, refer to the User Manual which can be found on the software CD or via Start | All Programs | SonTek Software after installation.

What's in the Case?

The specifications for the two available RiverSurveyor ADP models are below. Only one ADP is provided with each RiverSurveyor system:

<table>
<thead>
<tr>
<th>RiverSurveyor ADP</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>S5</td>
<td>Profiling: 0.06 to 5.0 m Depth: 15.0 m</td>
</tr>
<tr>
<td>M9</td>
<td>Profiling: 0.06 to 30.0 m Depth: 80.0 m</td>
</tr>
</tbody>
</table>

Important RiverSurveyor Facts

Some important tips on the RiverSurveyor and its use:
- The RiverSurveyor requires no calibration.
- Data files are stored on the system and not the PC. They must be downloaded from the system.
- Discharge calculation is internal, so measurement quality is unaffected by communications losses.

What does the RiverSurveyor do?

The RiverSurveyor measures velocities in 3-D throughout the water column below the ADP. It combines tracking information (from Bottom-Track or optional GPS) to measure the total discharge across a river section.

Assembling the System

The following instructions apply to Standard configuration systems using the Serial Power/Communications cable directly connected to the system for communications and power.

Windows Software Installation

Insert the RiverSurveyor Live CD-ROM into a PC. The Installation Menu should appear automatically. If not, double click on setup.exe in your CD-ROM drive menu. Install RiverSurveyor Live for PC.

Measuring Discharge - Theory

The total discharge through a measurement section is computed based on the mean water velocity in the water column and the cross-sectional area. For the purposes of a measurement, the section is broken into three key components: the Start Edge, the Transect and the End Edge. These components are summed together to calculate the total discharge as shown below:
Discharge Measurement Facts and Tips

Site selection is an important part of a discharge measurement and can be fundamental in its success. Here are a few quick guidelines to aim for:

- Avoid possible obstructions and immediately downstream of bridges, dates and weirs
- Flow should be uniform with minimal turbulence
- Consider the ADP's profiling and depth specification (shown on the other side)

Key factors when making a discharge measurement:
- During the edge measurements, keep the vessel as stationary as possible.
- During the transect, maintain a constant vessel speed and direction as is practical.
- Ideally, any vessel movement should be slow relative to the flow velocity, and changes in heading should be gradual.

Direct Connection to the System

Connect to the system using the Windows software by pressing the Connect button or the Quick Link on the Start page.

The System page (shown to the right) will be displayed showing the system configuration, settings and utility functions.

Pre-Measurement Tests

It is important to ensure the integrity of the system prior to any measurements and there are a series of tests that should be performed in this process:

- Compass Calibration is necessary prior to all measurements and compensates for magnetic fields. In the Utilities section in the software select Compass Calibration. Press the Start button and rotate the ADP through two complete circles while varying pitch and roll.

- In the Utilities section, set the System Time
- In the Recorder section, select Download all files and then Format Recorder.
- Magnetic Distortion (M) should be below 10. Keep your cell phone away from the system
- Calibration Score (Q) should be above 3

Updating and Changing Settings

These settings are typically specific to the site and should be reviewed prior to starting a measurement.

System Settings

Enter the depth the vertical beam is below the water surface, Salinity and Magnetic Declination

Windows Software Data Collection

To collect discharge data using the Windows software:

1. Press the Start button (or F5) to start data collection, but this does not record any data. Instead it allows the data from the system to be viewed to make sure the system is operating correctly. Make sure that all indicators (shown in the top left) are all valid (not red). Position the vessel at the start edge of the transect.

2. Press the Start Edge button (or F5) and collect at least 10 edge samples. The Edge windows will be displayed showing both edges. Keep the vessel as stationary as possible during this time. Input the start edge information into the Edge dialog that pops up and press OK.

3. Press the Start Moving button (or F5) and the Transect window will be displayed. Keep the vessel speed and direction constant as you cross the river.

4. When the vessel reaches the end edge press the End Edge button (or F5). Follow the same instructions as for the Start Edge (Step 2).

5. Press the End Transect button on completion of the end edge. This automatically opens a new data collection window so you can start a new measurement. The system is still running, so if you need to keep making measurements repeat steps 2 to 5 again or press the Abort button (or F8) to stop.

6. On completion of all your measurements, it is recommended to go to the System tab and download all your collected data files.

Technical Support

SonTek/YSI Technical Support is available 24 hours a day, 7 days a week.
Tel: +1-858-546-8327 Email: support@sontek.com
Fax: +1-858-546-8150 Web: www.sontek.com