Meeting Notes

Spokane River Regional Toxics Task Force and EPA Meeting
April 26, 2017
12:45 PM – 2:00 PM (Pacific Daylight Time)

Attendees:
- EPA Region 10 (R10)
 - Washington Operations Office: Lucy Edmondson,
 - Office of Water and Watersheds: Christine Psyk, David Croxton, Angela Chung, Brian Nickel, Lindsay Guzzo, Matt Szelag, Laurie Mann.
 - Office of Air and Waste: Michelle Mullin
- EPA Headquarters
 - Office of Water, Office of Science and Technology: Elizabeth “Betsy” Southerland, Sara Hisel-McCoy, Erica Fleisig, Tanja Crk
 - Office of Chemical Safety and Pollution Prevention (OCSPP): Tanya Mottley, Erik Winchester, Peter Gimlin
- Spokane River Regional Toxics Task Force (SRRTTF)
 - Doug Krapas, Inland Empire Paper; Cadie Olsen, City of Spokane; Kevin Booth, Avista; Sarah Hubbard-Gray, Spokane River Stewardship Partners; Dave Moss, Spokane County; Rob Lindsay, Spokane County; Tom Agnew, Liberty Lake Sewer and Water District; Jerry White, Spokane Riverkeeper; Mike LaScuola, Spokane Regional Health District; Dave McBride, Washington State Department of Health; Mike Petersen, The Lands Council
- Other
 - Beth Schmoyer, City of Seattle

Location: Liberty Lake Sewer and Water District Office
22510 East Mission Ave., Liberty Lake, WA 99019

Task Force Overview: Adriane Borgias, SRRTTF
Formation, organization, comprehensive plan: www.srrttf.org

Concerns with Inadvertent PCBs: Doug Krapas (IEP)
Recycling Case Study – 10 min
Pollution Prevention Principles: Adriane Borgias (Ecology) – 2 min
Chemical Action Plan Holly Davies (Ecology) – 10 min
Product testing, pathways for release and exposure

Overview of EPA Programs that Address PCBs: EPA
Clean Water Act, Toxic Substances Control Act, Superfund, Clean Air Act
Region 10 (Michelle Mullin)
- Participated in EPAs internal workgroup about PCBs in surface water and pollution prevention solutions. Workgroup consists of EPA staff from several regions.
- Concluded that there is “no low hanging fruit.” There are data gaps and basic science is needed to eliminate the PCB processes.
EPA - OCSPP

- A TSCA Risk Assessment is needed to make regulatory changes. There is no information to support the Risk Assessment. It will take several years to do this and additional toxics information would be needed.
- The Water Quality Compliance method is Method 608 which does not measure PCBs at the low level of the water quality standard. Therefore facilities would not be out of compliance with the water quality standard.

EPA HQ (Betsy Southerland):

- EPA does not currently have the toxicity endpoints for individual PCB congeners to develop congener-specific PCB criteria.
- Fish tissue: when looking at exposure to PCBs from fish consumption, the question is whether the fish are primarily accumulating legacy vs. inadvertently generated PCBs. This information, coupled with toxicity data for inadvertently generated PCBs would affect the Human Health Criteria calculation. EPA understands that congeners that are components of Aroclors represent a major fraction of PCB concentrations in fish tissue in the Spokane River.

(Peter Gimlin)

- The 1979 50 ppm rules were bright line thresholds and EPA would have to evaluation risk for regulation at less than 50 ppm.
- It would be a “gargantuan” cost to EPA to regulate inadvertent PCBs. Enforcement would be huge, expensive, and at considerable risk to EPA.

Brian Nickel from EPA Region 10

- Under CERCLA the ATSDR ranks substances based on toxicity and prevalence at hazardous waste/clean up sites. PCBs are ranked #5.
- CERLCA clean up actions must be protective of human health and the environment and also cost effective.
- They must meet the requirements of other regulations (“ARARs”) but these can be waived, One example where they were waived was a situation where they were trying to meet water quality standards.
- Destruction of PCBs is the preferred disposal method, but not always feasible.

Lucy Edmondson

- PCBs are listed as a Hazardous Air Pollutant under the Clean Air Act, which means that EPA is required to identify sources of, and develop emissions standards for, these sources. EPA has identified sources – including categories of Incinerators, Utility Boilers (Used Oil), and Industrial Boilers, but not developed PCB standards yet.
- EPA has developed emission standards for polychlorinated dioxins, polychlorinated furans, which can include PCBs.

Betsy Southerland

- The Clean Water Act requires development of Human Health Criteria that are completely health based (no economic component) using fish and water consumption as the routes of exposure.
- In implementation, WA’s current water quality standard for total PCBs is below the detection limit for EPA-approved Method 608, required for determining permit compliance. There are no plans by EPA to require the more sensitive Method 1668 as a compliance method.
- If more sensitive PCB methods were ever to be required for determining permit compliance, variances (with pollutant minimization programs) would be a useful tool for WA to consider. EPA has developed the variance builder tool to assist states in developing variances that comply with EPA’s regulations.

Update on PCB-11 Risk Assessment: EPA-OCSPP and R10-OAW
Peter Gimlin from EPA HQ, OSCPP

- The National Toxics Program has been reviewing the toxicity of PCB-11. This is in vitro testing, which may not be conclusive and suggest the need for additional studies. The testing has been ongoing for a year and a schedule for when it will be complete is not forthcoming.
- It was noted that monochloro PCBs have a 50x factor, which means they can be present in a product at up to 2500 ppm. Dichloro PCBs have a 5x factor so they can be present at up to 250 ppm.
- Mono and dichloro PCBs are less persistent and less likely to bioaccumulate.
- There is a notice process for companies that generate inadvertent PCBs. EPA has received fewer than 100 notices.

Potential Solutions: All
SRRTTF requested EPA that we meet again to discuss collaborative solutions using the Spokane model.

Next Steps: All
EPA requested time to think about it and will respond back.