Monitoring to Assist in Defining the Sources of PCB Contamination in the Mission Reach

Spokane River Toxics Task Force Meeting
March 23, 2022
Background

• PCB concentrations in Mission Reach are higher than elsewhere in the river
 – Suggests presence of unidentified source

• Diagnostic monitoring was conducted in 2021 to aid in source identification
 – Water and sediment monitoring
 – PCB-detection dog
 – Sub-bottom object detection
 – Drive-point piezometer feasibility assessment
Water and Sediment Monitoring

• Three separate components, each with different objectives
 – Water column: Define the spatial distribution of PCB concentrations
 – “Artesian well” discharge: Provide an indication of the potential significance of contaminated groundwater
 – Bed sediments: Supplement the single Mission Reach sediment sample collected in 2018
Water Results: Total PCBs

- Spokane River
 - Concentrations generally range between 150 and 320 pg/l
 - No obvious spatial pattern indicating presence of a PCB source
 - Elevated concentration observed at E. Mission Ave. (574 pg/l)
 - Source (if any) upstream of Mission Reach

- Artesian well
 - PCB concentration = 2100 pg/l
Water Results: Homolog Distributions

• Spokane River
 – Tetra- most prevalent, followed by tri- and penta-chloro homologs
 – Potentially indicative of a mixture of Aroclor 1242 and 1254

• Artesian Well
 – Dominated by tri and tetra-chloro homologs
 – Very similar to Aroclor 1242
Sediment Results: Total PCBs

- Consistent with historically observed patterns
 - One elevated (300 ug/kg) concentrations
 - Two concentration similar to those seen outside of Mission Reach
Sediment Results: Homolog Distributions

- Elevated sample
 - Penta- most prevalent, followed by hexa- nona- and tetra-
 - Does nona- signal represent a Galbestos (Aroclor 1268) source?
Water and Sediment Survey: Findings and Next Steps

- “Artesian well” sample suggests presence of subsurface contamination
 - Artesian well may actually be a subsurface drain or creek
 - Currently initiating a deeper dive into local geohydrology
 - Additional sampling to confirm elevated concentrations

- Sediment sampling confirms presence of patchy contamination
 - Additional monitoring recommended after follow-up object detection survey

- River samples did not indicate presence of unknown source in Mission Reach
PCB-Detection Dog

- Trained PCB-detecting dog deployed to identify potential areas of PCB contamination in riparian areas of the Mission Reach
 - Location targeted to where the highest PCB concentrations were observed in biofilm
PCB-Detection Dog: Findings and Next Steps

- No definitive sources of PCBs detected along riverbank
- Detections were observed at
 - several buildings
 - stormwater catch basin sites
 - drywell sites
- Sampling to be recommended at catch basins
 - Follow-up monitoring contingent upon those results
Object Detection Survey

- Remote sensing technologies deployed to identify potential PCB-containing objects in the riverbed
 - Side scan sonar
 - Physical objects
 - Magnetometer
 - Metallic objects
Object Detection Results

- Entire Mission Reach could not be surveyed due to construction at Trent Bridge

 - Monitored in 2021
 - To be monitored in 2022
Object Detection Results

- Areas of contamination identified in lower portion of surveyed area
Object Detection Results

• Three metallic objects identified in downstream portion of surveyed area
Object Detection: Next Steps

- Extend object detection survey to cover unmonitored portion of the Mission Reach
- Recommend targeted sediment/biofilm sampling on entire Mission Reach after object detection survey is complete
Drive-Point Piezometer Feasibility Assessment

- Groundwater interaction is of concern in the Mission Reach.
- Temporary drive-point piezometers are being considered for use in groundwater quality monitoring as part of the dissolved oxygen TMDL.
- Feasibility assessment conducted to determine whether they could be used in Mission Reach:
 - Can they be installed?
 - Can we measure water quality in the transition zone between river and aquifer?
Piezometer Feasibility Assessment: Findings and Next Steps

• Piezometers were successfully installed at two out of three locations attempted in the Mission Reach
 – Conductivity in the transition zone higher than that measured in the river

• Next steps
 – No further action planned until ongoing studies assessing groundwater interaction in Mission Reach are completed
Report Status

• Draft distributed for TTWG review March 10
 – Discussed at March 15 TTWG meeting
 – Comments due March 31
 – TTWG approval expected at April 20 meeting

• Submit to Task Force on April 20 for approval at April 27 meeting